Contents

	Preface.	\mathbf{v}
1.	Introduction.	1
	1.1. Skin Effect in Metals.	1
	1.2. Influence of a Magnetic Field.	4
	1.3. Classification and General Character of Electromagnetic	
	Waves in Metals.	5
2.	GENERAL FORMULATION OF THE PROBLEM.	10
	2.1. Maxwell's Equations in an Infinite Metal.	10
	2.2. Dispersion Relation.	12
	2.3. Excitation of Electromagnetic Waves by an External	
	Field.	13
	2.3.1. Surface impedance and field distribution.	13
	2.3.2. Excitation of waves in a plate.	15
	2.4. Properties of the Conductivity Tensor.	17
	2.5. The Kinetic Equation.	17
3.		21
	3.1. Helicon Waves in the Absence of Non-local Effects.	21
	3.2. Non-local Effects.	23
	3.2.1. Non-local effects in a wave propagating along the	
	magnetic field $(\mathbf{k} \parallel \mathbf{H})$.	23
	3.2.2. Propagation in an arbitrary direction $(\phi \neq 0)$.	
	Asymptotic behaviour of the high-frequency	
	current.	27
	3.2.3. Non-local damping of helicon waves.	31
	3.2.4. Excitation of helicon waves.	32
	3.3. Experiments on Helicon Waves in Alkali Metals.	33
4.	HELICON WAVES IN METALS WITH ANISOTROPIC FERMI SURFACES.	39
	4.1. Dynamics of Conduction Electrons with a Complicated	
	Dispersion Law in a Magnetic Field.	39
	4.2. Helicon Waves in the Local Limit.	41
	4.2.1. Closed orbits.	41
	4.2.2. Open orbits.	43
	4.3. Non-local Effects.	43
	4.3.1. Conductivity tensor.	44
	4.3.2. Non-local effects in helicon waves.	47
	4.4. Experiments on Helicon Waves in Anisotropic Metals.	48
5.	MAGNETOPLASMA WAVES.	54
	5.1. Magnetoplasma Waves in Semi-metals.	55
	5.1.1. Isotropic model.	55
	5.1.2. Influence of anisotropy.	57
	5.1.3. Excitation of magnetoplasma waves.	58
	5.1.4. Limiting frequencies in the magnetoplasma wave	
	spectrum.	59
	5.2. Magnetoplasma Waves in Typical Metals.	61
	5.2.1. Role of non-local damping.	61
	5.2.2. Fast magnetosonic waves.	63

	5.3. Spiral Waves and Dynamical Diamagnetic Resonance.	65
	5.4. Experiments on Magnetoplasma Waves in Bismuth.	69
6.	Waves with a Discrete Spectrum.	76
	6.1. Qualitative Considerations.	77
	6.2. Conductivity Tensor.	78
	6.3. Properties of Waves with a Discrete Spectrum.	81
	6.3.1. Wave spectrum.	81
	6.3.2. Damping of waves.	82
	6.3.3. Polarization of waves.	83
	6.3.4. Effect of anisotropy of Fermi surface.	83
	6.3.5. High-frequency waves.	84
	6.4. Excitation of Waves with a Discrete Spectrum.	84
7.	ELECTROMAGNETIC WAVES NEAR CYCLOTRON RESONANCE.	87
	7.1. Qualitative Considerations.	87
	7.2. Conductivity Tensor.	88
	7.2.1. Dispersion relations.	88
	7.2.2. Conductivity in the short-wavelength limit.	89
	7.2.3. Conductivity in the long-wavelength limit.	90
	7.3. Properties of Electromagnetic Waves.	92
	7.3.1. Ordinary wave.	92
	7.3.2. Extraordinary wave.	93
	7.3.3. Longitudinal wave.	94
	7.3.4. Effect of anisotropy.	95
	7.4. Excitation of Waves.	97
	7.4.1. Field distribution at large distances.	97
	7.4.2. Surface impedance. Effect of collisions of	
	electrons with the surface of the metal.	100
	7.4.3. Experiments on electromagnetic waves near	
	cyclotron resonances.	100
8.	QUANTUM PHENOMENA IN WAVE PROPAGATION.	102
	8.1. Electron Energy Levels in a Magnetic Field.	103
	8.2. Giant Quantum Oscillations of Wave Absorption.	
	Qualitative Considerations.	106
	8.3. Quantum Theory of Wave Absorption.	108
	8.4. Quantum Oscillations of Helicon Wave Damping.	111
	8.5. Effect of Electron Scattering on Giant Oscillations.	113
	8.6. Quantum Electromagnetic Waves.	118
	8.6.1. High-frequency conductivity in the quantum case.	121
	8.6.2. Dispersion relation for quantum waves.	122
9.	COUPLED ELECTROMAGNETIC AND ACOUSTIC WAVES.	125
	9.1. Basic Equations.	125
	9.2. Propagation of Coupled Waves along the Magnetic	
	Field.	128
	9.3. Coupled Waves in an Inclined Magnetic Field.	
	Quantum Oscillations of the Degree of Coupling.	133
	9.4. Excitation of Coupled Waves in Metals.	135
10.	Conclusion.	139
	BIBLIOGRAPHY AND NAME INDEX	140