CONTENTS

1. General properties of plasmas and elementary processes	1
1. Elementary description	2
1.1. Fundamental parameters	2
1.2. Types of interaction in plasmas	7
1.3. Macroscopic description of plasmas: distribution functions	8
1.4. Concepts concerning collisions and cross sections	13
1.7. Mutual repulsion : space charge effects	23
2. Fundamental processes	24
2.1. Elastic collisions	26
2.2. Excitation phenomena	30
2.3. Ionization phenomena	33
	42
2.4. Capture phenomena: formation of negative ions	42
2.5. Recombination phenomena	
2.6. Particle emission by solids and surface effects	45
3. Formation and disintegration of a plasma	47
3.1. Formation of a plasma and high-frequency discharges	47
3.2. Disintegration of a plasma	56
4. High temperature plasma and thermonuclear fusion	57
4.1. Physical processes in a hot plasma	57
4.2. Binary and multiple corpuscular processes	58
4.3. Bremsstrahlung and excitation radiation	64
4.4. Charge transfer	66
4.5. Nuclear reactions	66
4.6. Pinch effect	69
5. A survey of collective processes	70
· •	
2. Principles of statistical mechanics	73
1. State of equilibrium	73
1.1. Fundamental definitions and results	73
1.2. Liouville's theorem. Evolution in time and total equilibrium	76
1.3. Uniform, microcanonical and canonical ensembles	78
1.4. Notes on the bases of the statistical method	80
1.5. Equilibrium distribution and equation of state	84
4.6. Expansion of the equation of state in parameter of density	
1.6. Expansion of the equation of state in powers of density	89
1.7. Bogolyubov's method	96
2. Evolutional systems or nonequilibrium systems	101
2.1. Establishment of the BBGKY equations	101
2.2. Transition from the BBGKY equations to Boltzmann's equations	104
3. Applications of the general principles to plasma physics	118

(xi)

CONTENTS

3.1. Plasmas in equilibrium	118 137
3. Classical dynamics of binary collisions	143
1. Introduction 2. Definitions 3. The conservation equations 4. Investigation of the trajectory and scattering calculation	143 144 147 149
5. Return to the lab. system 6. Definition of elastic scattering cross sections 7. Laws of force and calculation of cross sections 8. Intermolecular forces	153 160 164 171
4. Motion of charged particles in electric and magnetic fields Brownian motion of charge carriers	174
1. Individual motion of a charged particle 1.1. The general equations of motion 1.2. Analysis of particular cases A. Case of a sole electric field B. The case of a constant and uniform magnetic field C. The case of nonuniform or time-dependent magnetic fields	174 174 176 176 184 201
2. Brownian motion of charged particles in an electromagnetic field	238 238 242 245 247
5. Boltzmann's integro-differential equation. Fundamental properties. Maxwell's transport equations	250
1. Boltzmann's integro-differential equation	250 250 253 259 262 267 269 270 272 275
6. Macroscopic relations. Equations of dynamics and hydrodynamics of plasma	277
1. A neutral one-component fluid. The hydrodynamic equations	278 284 289 297 299 301
(xii)	

CONTENTS

5. Steady-state solutions to the general plasma equations. The magnetohy-	
	307
5.1. The completely ionized gas	308
5.2. Ternary mixture	311
6. Magnetohydrodynamics of plasma. Various applications	312
6.1. General equations	312
6.2. Application to magnetohydrostatics. Confinement	318
6.3. The coefficients of conductivity and diffusion in the presence of a magne-	
tic field	320
7. Linearization of the general equations and the propagation of waves	325
7. The H theorem. The properties of the Maxwellian state of plasmas.	
The mean free path. Application to the transport phenomena	
(viscosity, diffusion, conductivity)	335
1. The H theorem	335
1.1. Introduction	335
1.2. Boltzmann's H theorem : equilibrium solutions	335
1.3. The properties of the Maxwellian state	339
1.4. Steady state of a gas in a container with reflecting walls	341
1.5. Steady state of a gas in the presence of an external force $(F \neq 0)$	343
1.6. The H theorem for a mixture of gases	347
2. Kinetic theory of mean free path	348
2.1. Calculation of the total number N_{12} of collision events	348
2.2. Definition of the collision frequency and the mean free path accor-	
ding to Maxwell	351
2.3. Free path and collision frequency of a particle of given velocity	353
2.4. Probability of observing a free path of given length	356
2.5. The mean free path according to Tait	357
2.6. Persistence of velocities after the collision	358
2.7. The ratio of the mean persistencies	360
3. Transport phenomena in a plasma	360
3.1. Flux of molecular properties	360
3.3. Corrections to the elementary theory of m. f. p	367 370
3.4. The m. f. p. theory of thermal conduction and diffusion within a plasma	370
in the presence of a magnetic field	977
3.5. The case where the force F is produced by an electric field E	377 380
3.6. The Leduc-Righi effect and the Nernst effect	381
3.7. Conductivity in the presence of an alternating field	382
3.8. Return to the theory of the mean motion of the electron in a magneto-	304
active plasma	391
don'to plasma	931
8. General methods of approximate solution of Boltzmann's integro-	
differential equation	396
1. Introduction and historical review	396
2. The fundamental ideas of the present chapter	400
2.1. Properties of the collision integrals and the Maxwell equations	400
2.1. Properties of the common integrals and the maxwell equations	401
2.3. Grad's method	402

(xiii)

CONTENTS

3. Boltzmann's equation and equation of moments of the distribution func-	
tion	409
4. General iteration method (Maxwell, Ikenberry and Truesdell)	415
5. Grad's method	422
5.1. The case of Maxwell particles	424
5.2. The general case (arbitrary interaction law)	425
6. The normal solutions by Hilbert, Enskog and Chapman	437
6.2. Hilbert's method	440
6.3. Transition to Enskog's method	446
6.4. The Enskog-Chapman method	450
6.5. Calculation of $f^{(1)}$ (first-order approximation)	457
6.6. Calculation of $f^{(2)}$ (second-order approximation)	471
6.7. Comparison of the iterative method (Maxwell-Truesdell) with the	7.04
method of "normal" solutions (Enskog-Chapman)	481
7. Method of linearizing Boltzmann's equation	488
7.2. Linearization about $f^{(0)}$	488
7.3. Linearization about a locally Maxwellian function $f^{(0)}$	505 506
8. Equations allied with Boltzmann's equation	506
8.1. Highly rarefied gases	508
9. Method of solving the linearized Boltzmann equation satisfied by a	500
Lorentz plasma	510
9.1. General features	510
9.2. Analysis of the electron distribution f_e in a Lorentz plasma	513
9.3. Expansion of the electron distribution f_e in a tensor form (irreducible).	521
9.4. The general equations of first order	524
9.5. Solutions to the system (8-401) for a weak electric field	527
9.6. Notes on the general tensor form of Boltzmann's equation	528
9.7. Study of the steady ion distribution f_i in the case of strong electric	
fields	530
ppendix I. Dyad and tensor notations used in the present book	533
1. The vector gradient	533
2. Dyads and tensors	534
3. Products of vectors and tensors	536
4. Theorems concerning the dyads	537
5. Dyadic differential operators	538
6. Integral formulas	540
7. Notations in kinetic gas theory	542
ppendix II. Spherical functions	546
	340
1. Note on the spherical function	546
2. Hermite polynomials and Laguerre-Sonine polynomials	555
3. The Sonine polynomial $T_m^{(n)}(x)$ and $S_m^{(n)}(x)$	558
4. Tensorial Hermite polynomials	559
5. Calculation of certain useful integrals	564
6. Applications to the kinetic gas theory. Relations between spherical ten-	004
sors and Hermite tensors and comparison of the various expansions of	
the distribution function	568
VARO VARO VARO VI LULIO VA VI LULIO VA VI LULIO VA VI LULIO VA VARO VARO VARO VARO VARO VARO VARO	500
(xiv)	1

CONTENTS

 6.1. Relations between spherical tensors and Hermite tensors	568 569 573
Appendix III. Calculations of various integrals derived from the collision integral	578
1. Calculation of the terms in $C(V^n)$ 1.1. Calculation of $C(V^2)$ and $C(V^3)$ for Maxwell particles	578 579 582 593
Appendix IV. 1. The properties of the collision integrals. The collision invariants	598
2. The linear operator $I(\Phi)$	601 607 617
Reference list	621
Index of notations	625
Index	629

(xv)