CONTENTS

List of Contributors

Preface	vii
I. Introduction to the Molecular-Transport Equations of Dilute Gases	
I. Oppenheim	
I. Introduction to Statistical Mechanics	1
II. Relaxation-Time Spectrum	6
III. Introduction to Transport Equations	9
IV. Equations of Motion and Kinefic Equations	12
V. Stochastic Equations and Kinetic Equations	20
References	22
II. Derivation of Hydrodynamic Equations from the Boltzmann EquationHans C. Andersen	
I. Introduction	26
II. Physical Basis for Hydrodynamic Equations	26
III. The Boltzmann Equation and the Equations of Change	28
IV. Chapman-Enskog Expansion Method	33
V. Hydrodynamic Equations for "Almost-Frozen" Flow	35
VI. Hydrodynamic Equations for Local Chemical Equilibrium	43
VII. Hydrodynamic Equations for a System in Which the Vibrational	
Temperature Is Not Equal to the Translational Temperature	47
VIII. Conclusion	53
References	54
wi	

xii CONTENTS

III. Transport in Neutral Gases	
E. A. Mason	
I. Introduction	5
II. General Theory	5
III. Viscosity	6
IV. Thermal Conductivity	7
V. Diffusion	8
VI. Pressure Diffusion and Thermal Diffusion	8
VII. Summary of Calculation Recipes	8
VIII. Determination of Intermolecular Forces IX. Available Tabulations	9
References	9
IV. Kinetic Equations for Fully Ionized Plasmas	
C. M. Tchen	
I. Introduction	10
II. Liouville Equation and BBGKY Hierarchy	10
III. Vlasov Equation	10
IV. Generalized Fokker-Planck Equation for Slowly and Rapidly	10
Varying Processes V. Lenard-Balescu Equation	10 ⁴
VI. Fokker-Planck Equation with Memory	10
VII. Silin Kinetic Equation for Rapidly Varying Processes	10
VIII. Linearization	110
Appendix. Derivation of the Shielding Function	110
References	114
V. The Boltzmann and Fokker-Planck Equations	
M. B. Lewis	
I. Introduction	115
II. Derivation of the Fokker-Planck Equation from the Boltzmann Equation	116
III. Derivation of the Fokker-Planck Equation from a Markov Process	124
IV. Derivation of the Boltzmann and Fokker-Planck Equations from the	
Liouville Equation	132
References	139
VI. Calculations of Transport Coefficients in Ionized Gases	
A. R. HOCHSTIM and G. A. MASSEL	
Introduction	142
I. Macroscopic Rates and Transport Coefficients for Plasma	148
II. Continuity Equation and Current Transport Coefficients	149

	CONTENTS	xiii
111	Ambipolar Electron Diffusion	151
	AC Electric Conductivity and Dielectric Constant	154
	Energy Equation and Energy Transport Coefficients	157
	Thermoelectric Effect and Effective Coefficient of Thermal Conductivity	160
VII.	Einstein and Onsager Relations between Current and Energy Transport Coefficients	161
VIII.	Generalized Wiedmann-Franz Law	163
	Discussion of the Kinetic Description of Ionized Gases	164
	General Form of the Collision Integral	166
	Spherical Harmonics Expansion and Logarithmic Cutoffs	167
	Transport Properties in Slightly Ionized Gases	173
	Transport Properties Including Electron-Electron Collisions	188
	General Ohm's Law and Hall Conductivities	189
XV.	Ion Contributions to the Transport Properties in Plasmas	192
XVI.	Convergence of the Laguerre Expansion for Electron Transport	
	Coefficients	216
XVII.	Summary of Notations, Examples, and Numerical Results for	224
	Electron Transport Coefficients	221
	Appendix A. Laguerre Polynomials and Products	239
	Appendix B. Elements of 20 × 20 Matrix	243 251
	References	
Felix	Chemical Reactions in High-Temperature Gases as Co Processes T. Smith Introduction	llision 257
	The Place of Chemical Kinetics in the Domain of Collision Processes	260
III.	Gaseous Statistics and the Boltzmann Equation for Chemical	
	Reactions	264
	Collisions	268
V.	Reaction Cross Sections and Reaction Rates	278
	References	280
	Rate Coefficients, Reaction Cross Sections, and Micro Reversibility Ross, John C. Light, and Kurt E. Schuler	scopic
T	Introduction	281
11	Reaction Cross Sections and Rate Coefficients	285
111	Examples of Relation between σ_k and k_{σ}	295
īV	Microscopic Reversibility and Detailed Balance	307
	References	320

xiv Contents

IX. Triple Collisions and Termolecular Reaction Rates

FELIX T. SMITH	
Introduction	321
I. The Standard Gas-Kinetic Triple Cross Section	324
II. Bodenstein's Theory and the "Collision Time"	326
III. Repulsive Collisions	328
IV. Attractive Collisions: The Collision Lifetime	329
V. Lifetime and Binary Cross Sections	332
VI. Quantum Effects in the 2-Body Lifetime	334
VII. Electronic States and Curve Crossings	346
VIII. Modes of 3-Body Collision: Entry	351
IX. Modes of 3-Body Collision: Exit	359
X. Gradual Stabilization and Successive Collisions	372
XI. Many-Body Interactions	375
XII. Experiment and Theory	377
References	380
 X. Methods for Calculating Inelastic Collision Cross Sections in Low-Energy Collisions ERNEST BAUER 	
I. Introduction	382
II. Inelastic Collisions of Electrons with Atoms and Molecules	386
III. Slow Inelastic Collisions of Heavy Particles	400
IV. The Interaction Potentials	413
Appendix A. Coupling of Electronic and Nuclear Motions: The	
Born-Oppenheimer Terms	421
Appendix B. Close Coupling Calculations (by R. Marriott)	422
References	
	424
Charts A. B. and C	424
Charts A, B, and C	
Charts A, B, and C References	
	431