CONTENTS

PREI	FACE	TO THE ENGLISH EDITION	viii
PREI	FACE	TO THE RUSSIAN EDITION	xv
NOTA	TIOI	N .	xvii
. I.		FUNDAMENTAL THEORY OF ELECTROMAGNETIC WAVE PAGATION IN PLASMAS	1
	§ 1.	General introduction. The plasma parameters in various cases Various cases of wave propagation in plasmas Plasma parameters Plasma properties	1 1 2 3
	§ 2.	Fundamental equations. The nature of the approximations used The field equations One-dimensional problems. Plane waves Plasma oscillations Spatial dispersion Propagation of various types of waves	4 6 8 9 9
п.	WAV	7E PROPAGATION IN A HOMOGENEOUS ISOTROPIC PLASMA	12
	§ 3.	The complex permittivity of a plasma: elementary theory Elementary derivation of the expressions for ε and σ The effective field The range of applicability of the formulae The permeability of the plasma	12 12 15 18 19
	§ 4 .	The method of the Boltzmann equation The distribution function and the Boltzmann equation A plasma in a strong electric field The form of the distribution function and the equation for it in a weak field Transport cross-sections. Debye screening The limits of applicability of the kinetic-theory formulae	20 20 21 22 25 29
•	§ 5.	Microprocesses in plasmas Microprocesses in plasmas. The equations of conservation of particles of each species The slowing-down time of non-equilibrium electrons in a plasma The deviation of the distribution function from the equilibrium form. Estimates for the ionosphere	31 31 34 37
	§ 6.	The permittivity and conductivity of a plasma: kinetic theory General relations Collisions with molecules Collisions with ions The part played by collisions between electrons	39 39 41 42 43
		•	

Contents

vi

		The collision frequency in the ionosphere	45
		Low frequencies	47
		The general case of an arbitrary frequency	49
		Collisions of ions with ions and molecules	51
		Dispersion relations	53
	§ 7.	The propagation of electromagnetic (transverse) waves in a homogeneous	
		plasma	53
		The indices of refraction and absorption	53
		Damping of waves in the absence of absorption	56
		Expressions for n and \varkappa in limiting cases	56
		Real and complex frequencies	57
	§ 8.	The allowance for spatial dispersion. Plasma waves and acoustic waves Plasma (longitudinal) waves. Phenomenological allowance for spatial dispersion	58
		dispersion The kinetic theory	58 61
		Cherenkov radiation in a plasma. Absorption of plasma waves	64
		The effect of ions. Acoustic waves	69
		The quasihydrodynamic method	09 71
		Longitudinal waves in a two-temperature plasma	72
	• •		
	§ 9.	Summary of principal formulae	75
		Transverse waves	75
		Longitudinal waves in a plasma	-78
TIL	WAV	E PROPAGATION IN A HOMOGENEOUS MAGNETOACTIVE	
	PLAS		81
	d		01
	§ 10.	The complex permittivity tensor	81
		The effect of a constant magnetic field on the properties of a plasma	81
		The complex permittivity tensor: elementary theory	82
		Properties of the tensor ϵ'_{ik}	84
		The tensor ε'_{ik} in other coordinate systems	85
		Kinetic theory	88
		The effect of the motion of ions	91
	§ 11.	High-frequency wave propagation in a magnetoactive plasma	94
		Expressions for the indices of refraction and absorption $n_{1,2}$ and $\varkappa_{1,2}$	94
		Some particular cases	96
		Propagation of waves at an arbitrary angle α to the magnetic field	98
		Wave polarisation	103
		Normal waves. The case of small angles α	105
		The allowance for absorption	108
		Quasilongitudinal and quasitransverse propagation	110
		The critical collision frequency. Graphs of $n_{1,2}(v)$ and $\varkappa_{1,2}(v)$	111
		The effect of ions	115
		Absorption and emission of electromagnetic waves by a magnetoactive	
		plasma	116
	§ 12.	Spatial dispersion and plasma waves in a magnetic field: the allowance	
	-	for thermal motion	118
		The passage to the limit of an isotropic plasma	118
		The allowance for spatial dispersion in an anisotropic medium	120

Contents	vii
The quasihydrodynamic approximation	121
Plasma waves in a magnetoactive plasma	123
The kinetic theory	124
The nature of the collisionless absorption	125
Decults of the kinetic theory for longitudinal propagation	129
B ecompose absorption for an arbitrary angle α	133
The Cherenkov absorption range (near the resonance frequency ω_{∞})	139
The ordinary wave at low frequencies	147
Summary	147
§ 13. Some remarks on plasma dynamics	148
The hydromagnetic approximation	148
The quasihydrodynamic approximation	150 153
The motion of a pure electron-ion plasma and a weakly ionised gas Steady motion of a weakly ionised gas in a magnetic field. The Earth's	155
ionosphere	
§ 14. Propagation of low-frequency and hydromagnetic waves	157
Introduction	157
Hydromagnetic waves	157
Low-frequency waves: the quasihydrodynamic approximation	163
The range of validity of the hydromagnetic formulae	165
Angles α close to $\frac{1}{2}\pi$	166
The region of ion gyromagnetic resonance	167
The effect of molecules	167
The thermal motion. Some results of the kinetic theory: velocity change, damping in the absence of collisions	169
§ 15. Summary of principal formulae	173
IV. WAVE PROPAGATION IN AN INHOMOGENEOUS ISOTROPIC PLASMA	. 178
	178
§ 16. Introduction. The approximation of geometrical optics The wave equations. A medium of plane layers	178
Exact solutions for a plane-parallel medium	179
Approximate solutions	179
The approximation of geometrical optics	180
A more rigorous treatment of the same problem	183
Cases where the approximation of geometrical optics is inapplicable	•
Total internal reflection	100
The reflection of radio waves from the ionosphere	187
A completely non-reflecting layer	188
Weak reflection	189
Reflection from a discontinuity of the derivative dn/dz	191
§ 17. Exact solutions of the wave equation with ε' linear, parabolic, or equa	1
to $a/(b+z)^2$	104
Introduction	192
A linear layer without absorption	193
A linear layer with absorption	195
A parabolic layer without absorption	198
A layer with $\varepsilon' = a/(b+z)^2$	200
§ 18. Reflection and transmission of waves by "symmetrical" and "transition	,,
layers of arbitrary thickness	202

vii

Contents

viii

	A smooth layer with four parameters A "symmetrical" layer	202
	A "transition" layer. The limiting transition to a sharp boundary	$\begin{array}{c} 202 \\ 204 \end{array}$
	§ 19. Oblique incidence of waves on a layer	905
	General relations. A wave with the electric vector perpendicular to the plane of incidence	205 e
	The approximation of geometrical optics	205
	The ray treatment	207
	Waves with the electric meeter in the	208
	Waves with the electric vector in the plane of incidence The equation for the magnetic field of the wave	209 212
	§ 20. A property of the field of an electromagnetic wave propagated in a	
	inhomogeneous isotropic plasma. Interaction of the electromagnetic and plasma waves	n .c
	Praising way ca	213
	A physical description of the phenomenon The solution of the wave equation	213
	The allowance for spatial dispersion	214
	Allowance for the generation of a	2 2 0
	Allowance for the generation of plasma waves. The interaction between different normal waves	
	The mutual transformation of and interaction between longitudinal and transverse waves in a plasme	3
	a prasma	228
•	§ 21. The propagation of pulse signals	229
	The Fourier representation of a pulse field	229
	Propagation of a quasimonochromatic pulse without allowance for spreading	230
	Phase and group velocities of waves	230 231
	Spreading of pulses	
	The limits of applicability of the approximation used, and some more accurate results	
		238
	§ 22. Energy density in a dispersive medium. The velocity of signals in plasmas	
	in the star was bor priorit is present	240
	Introduction	2 40
	Energy density in a non-absorbing dispersive medium	241
	The case of an apsorbing medium	244
	Energy density in a plasma	245
	Energy density for an assembly of oscillators	246
	Energy density in plasma wayes	247
	Velocity of signals in an absorbing medium. Application to a plasma	248
V.	WAVE PROPAGATION IN AN INHOMOGENEOUS MAGNETOACTIVE	
	ILASMA	251
	§ 23. Introduction. The approximation of geometrical optics	251
	The wave equations	$251 \\ 251$
	The approximation of geometrical ontics	~ ~ ~
	The limits of applicability of the approximation of geometrical	202 951
	- Boundary of the laver and the interaction of normal	40±
	waves there	068

		١	257
§ 24.	Propagation of pulses The group-velocity vector in a magnetoactive medium		260 260

Contents

ъ.		The group-velocity vector, the direction of the ray and the energy-flux vector Propagation of pulses in an inhomogeneous medium	$\begin{array}{c} 264 \\ 266 \end{array}$
	0 OF		
	§ 25.	Reflection of waves from an inhomogeneous layer	$\begin{array}{c} 267 \\ 267 \end{array}$
		Reflection from a layer. Angles $\alpha = 0$ and $\alpha = \frac{1}{2}\pi$ The approximate solution for an arbitrary angle α	267 269
		The approximate solution for an arbitrary angle α	209
	§ 26.	The limiting polarisation of waves leaving a layer of inhomogeneous magnetoactive plasma	275
		Introduction. Some estimates	275
		The approximate solution	276
		Results of the calculation	2 81
	§ 27.	The behaviour of the wave field and the coefficients of reflection and	
		transmission when the refractive index has singularities	282
		Introduction. Singularities (poles) of the refractive index The right $r_{1}^{(r)} = r_{1}^{(r)} r_{2}^{(r)} + r_{2}^{(r)} r_{2}^{(r)}$	282 994
		The rigorous solution for a layer with $e'_{eff} = g/(z + is)^2$ The rigorous solution for a layer with $e'_{eff} = g^2/(z + is)$. The physical	284
		interpretation for a layer with $c_{eff} = g^2/(2 + is)$. The physical interpretation	2 85
		A layer with $\varepsilon'_{\text{eff}} = g_1^2 + g_2^2/(z + is)$	287
		The pole of the function $(n - i\varkappa)_{1,2}^2$ in a magnetoactive plasma	289
		The mechanism of resonance. The "peaking" of the field in a magneto-	200
		active plasma	292
		The Earth's ionosphere	294
		The allowance for spatial dispersion	295
	§ 28.	The "tripling" of reflected signals by the interaction of normal waves for small α	295
		The range of small angles α between the magnetic field and the wave	
		vector. Description of the phenomenon	295
		Solution by the perturbation method for very small α	298
		The variational method: second limiting case	303
		The method of phase integrals	311
		General results for $u = \omega_H^2 / \omega^2 < 1$	313
		Formulae for δ_0 . Allowance for collisions	315
		The results for $u = \omega_H^2 / \omega^2 > 1$	319
	§ 29.	Waves obliquely incident on a layer. The reciprocity theorem Introduction	$\begin{array}{c} 322\\ 322 \end{array}$
		The approximation of geometrical optics	323
		The field in the first approximation of geometrical optics	325 325
		Graphs of the functions $q_{1,2}(v)$	327
		The paths of the wave normals and rays	330
		Some special cases	335
		Penetration of waves and the "tripling" of signals for oblique incidence	337
		Penetration of waves with $u = \omega_{H}^{2}/\omega^{2} > 1$	339
		Proof of the reciprocity theorem	340
		The generalisation to the case of a magnetoactive medium	342
		Media with an unsymmetrical tensor μ_{tk}' and with spatial dispersion	343
VI.	REF	LECTION OF RADIO WAVES FROM IONOSPHERIC LAYERS	345
VI.		LECTION OF RADIO WAVES FROM IONOSPHERIC LAYERS Introduction. Reflection from an arbitrary smooth layer	345 345

ix

Contents

xi

x

		Parameters of the ionosphere	34 6
		Reflection of waves from an arbitrary layer	34 8
		The effective height of reflection z_a . Height-frequency characteristics	352
		A parabolic layer	355
		Allowance for the variation of the layer with time	358
	§ 31.	Allowance for absorption	360
		The effect of absorption on reflection of waves	360
		The reflection coefficient when absorption is small. Determination of	
		v_{ett} from measurements of absorption	362
	\$ 32	The field structure near the reflection point	364
	3 021	The field structure	364
		The approximation of geometrical optics	366
		••	367
		Allowance for absorption	307
	§ 33.	Reflection and penetration of waves with nearly the critical frequency in	
		a layer	368
		A parabolic layer	368
		An arbitrary layer	369
		Allowance for absorption	373
		The effective height for a parabolic layer (exact solution)	374
		The time to establish the signal amplitude	377
			•••
	§ 34.	Reflection of obliquely incident waves	378
		The reflection point. The critical frequency	378
		The ray treatment	378
		Theorems giving relations between the group paths for oblique and normal	
		incidence	382
		Reflection from a spherical layer	384
		The field strength in signals reflected from the ionosphere	386
	C 95	Ways reflection with allowance for the effect of a magnetic field	389
	g 30.	Wave reflection with allowance for the effect of a magnetic field	389
		The effect of a magnetic field. Critical frequencies	
		The wave phase and the reflection coefficient. The course of the rays	391
		Quasilongitudinal and quasitransverse propagation	396
		Oblique incidence	397
		Allowance for the non-uniformity of the Earth's magnetic field	398
•			
VIT	RAD	IO WAVE PROPAGATION IN COSMIC CONDITIONS	400
V 11.	IIIID	TO WAYD THOMMONTON IN COMMIC COMPLETIONS	100
	§ 36.	Propagation of radio waves in the Sun's atmosphere	400
	•	Introduction	400
		The solar corona	401
		Propagation of radio waves in the corona	402
		Emission of radio waves. Allowance for refraction	408
		The effect of the magnetic field	412
		Transformation of plasma waves into radio waves	416
		Collisionless absorption	417
		Kirchhoff's law in a magnetoactive plasma	418
	§ 37.	Propagation of radio waves in the interstellar medium	42 0
		Absorption of radio waves in the interstellar gas: general remarks	420
		Calculation of the absorption coefficient in a highly rarefied plasma	422

medium	425
VIII. NON-LINEAR PHENOMENA IN A PLASMA IN A VARIABLE ELECTRO- MAGNETIC FIELD	428
 § 38. Introduction. A plasma in a strong uniform electric field The condition for the field in the plasma to be weak. Some examples Statement of the problem for a strong field The elementary theory The accuracy of the results of the elementary theory The kinetic theory A strongly ionised plasma A weakly ionised plasma 	429 430 436 437 440 442
§ 39. Non-linear effects in radio wave propagation in the ionosphere Introduction Basic relations The self-interaction effect Non-linear interaction of waves. Cross-modulation Non-linear interaction of unmodulated waves. Combination frequencies Non-linearity due to changes in electron density	444 446 448 452 456 458
APPENDIX A. ELECTROMAGNETIC WAVE PROPAGATION IN AN ANISOTROPIC DISPERSIVE MEDIUM	461
§A1. Fundamental equations; relations between expressions quadratic in the amplitudes of plane waves propagated in a dispersive medium	401
§A2. Inequalities which follow from the dispersion relations in the region of transparency	f 465
\$A3. Two theorems concerning wave propagation in the absence of spatia dispersion	1 471
§A4. The proof of the inequality (A 2.19)	475
APPENDIX B. THE CONSERVATION LAW AND THE EXPRESSION FOR THE ENERGY DENSITY IN THE ELECTRODYNAMICS OF AN AB SORBING DISPERSIVE MEDIUM	R 477
§B1. The basic equations and energy relations	478
§B2. The results for a model plasma	481
§B3. The application of the Boltzmann equation	486
§B4. The form of Poynting's theorem for a quasimonochromatic field in a arbitrary linear medium at rest	n 491
APPENDIX C. THE LAW OF CONSERVATION OF ENERGY IN THE ELECTRODYNAMICS OF MEDIA WITH SPATIAL DISPERSION	496
REFERENCES	501
INDEX	533