CONTENTS

Preface	•	. vii
Chapter 1. Introduction (Oscillations in Plasmas) by J. E. Drummond.	•	. 1
1. History of Plasma Oscillations		. 1
2. Basic Statistical Mechanics of Plasmas	•	. 10
3. Theory of Plasma Oscillations	•	. 15
4. Quantum Plasma Physics		. 25

PART I: BASIC PLASMA THEORY

Chapter 2. The Spectra of Systems of Interacting Particles by Y. Klimontovich and V. P. Silin	35
1. Introduction	35
2. The Equation for the Quantum Distribution Function	37
3. The Kinetic Equation for the Quantum Distribution Function	39
4. The Spectra of Collective Vibrations in the Self-consistent-field Approxi-	
mation	46
5. The Influence of Correlations of Particles on the Spectra of Collective Vibra-	
tions (Microscopic Approach)	54
6. The Influence of the Correlations of Particles on the Spectra of Collective	
Excitations; Phenomenological Theory of a Degenerate-electron Fermi	
Liquid , , , , , , , , , , , , , , , , , , ,	56
7. Energy Losses of a Charged Particle during Passage through Matter, Con-	
nected with the Excitation of Collective Vibrations in the Medium.	6 6
8. On Nonlinear Effects during Passage of Charged Particles through Plasma.	7 4
Chapter 3. Statistical Mechanics of Reversible Processes	
in Plasma Dynamics by E. Meeron	88

I. Basic Theory

1.	The Approximations Involved in the Definition of the Debye Length	90
2.	Density Expansions of Potentials of Average Force, Distribution Functions,	
	and Pressure	93
	Distribution Functions, Potentials of Average Force, and Pressure in Ionized	
	Media	9 9
4.	Discussion	106
	II. Possible Further Developments	

CONTENTS

Cha	apter 4.	Amplifying and Evanescent Waves, C Nonconvective Instabilities by P. A.							124
1.	Introdu	etion							124
2.	Amplify	ing and Evanescent Waves							128
3.	Convect	ive and Nonconvective Instability							133
4.	Discussi	on							136
Cha	apter 5.	How to Distinguish between Attenuat	ting	an	đ				
		Amplifying Waves by O. Buneman							143
1.	Example	es of Attenuating and Amplifying Way	ves						143
2 .	Growth	in Space and Growth in Time							144
3.	Choice of	f a Termination							145
4.	Conside	rations of a Power							148
5.	Fourier	Analysis of the Circuit Discontinuity	•						148
6.	The Cir	euit Equation							149
		Integration							151
8.	Probe b	etween Parallel Plates							152
		Prototype Tube							155
10.	The Cro	ssed-field Amplifier							156
		tion in the Cold Tube: Parasitic Mode							158
		g the Probe Level							160
		nce as Ratio of Field Components .							161
		ots of the Dispersion Equation							162

PART II: MAGNETOHYDRODYNAMICS

Cha	apter 6. A Review of Magnetohydrodynamics by Y. A. Yolen	• .			167
1.	Introduction				167
2.	Equations of Magnetohydrodynamics				168
3.	Dimensional and Scaling Considerations				171
4.	Inviscid Flow in a Channel				174
5.	Constant-area Channel Flow				175
6.	Flow between Uniform States of a Gas of Finite Conductivit	у.			177
7.	Flow of a Perfectly Conducting Compressible Fluid				180
8.	Intermittent Acceleration of Dense Plasma.				185
9.	Magnetohydrodynamic Acceleration of Rarefied Plasma .				190
10.	Viscous Flows				193
11	Hydrodynamic Analogies				197
	apter 7. The Bennett Pinch by O. Buneman				202
Cha	apter 7. The Bennett Pinch by O. Buneman				$\begin{array}{c} 202 \\ 202 \end{array}$
Cha 1.					
Cha 1. 2.	Introduction	 			202
Cha 1. 2. 3.	Introduction	 	•		202 203
Cha 1. 2. 3. 4.	Introduction Outline of the Derivation The Relativistic Dynamical Equations	· ·	•		202 203 204
Cha 1. 2. 3. 4. 5.	Introduction Outline of the Derivation The Relativistic Dynamical Equations	 	•	•	202 203 204 206
Cha 1. 2. 3. 4. 5. 6.	Introduction	· ·	•		202 203 204 206 208
Cha 1. 2. 3. 4. 5. 6. 7.	Introduction	· · ·	•		202 203 204 206 208 209
Cha 1. 2. 3. 4. 5. 6. 7. 8.	Introduction	· · · · · · · · · · · · · · · · · · ·	• • • •	- - - -	202 203 204 206 208 209 210
Cha 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	Introduction Outline of the Derivation The Relativistic Dynamical Equations Curvilinear Coordinates The Invariant Boltzmann Function The Boltzmann Equation Relativistic Maxwellian Distributions and Drifts Over-all Charge and Current Density Relative Drift of Ions and Electrons The Field Equations and Their Neutral Solutions	· · · · · · · · · · · · · · · · · · ·			202 203 204 206 208 209 210 212
Cha 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	Introduction	· · · · · · · · · · · · · · · · · · ·			202 203 204 206 208 209 210 212 213

CONTENTSxiii12. Stability Analysis21713. Perturbations of the Boltzmann Function21714. Perturbations Obtained by Integration along Orbits21915. Conditions at the Turning Points of Orbits22016. The Eigenvalue Program221Chapter 8. Stability of Relativistic Self-focusing Streams
by D. Finkelstein and P. A. Sturrock224

1. Introduction							224
2. Classification of Potential Instabilities	ι.						225
3. Sinuous Instability							230
4. Discussion							236

PART III: MICROWAVE PLASMA PHYSICS

Chapter 9. Electrical Properties of High-altitude Ionized	
Shock Waves by P. A. Goldberg	245
1. Introduction	245
2. Shock-wave Electrical Effects—General Aspects	247
3. Shock-wave Air Parameters	247
4. D-C Conductivity of Ionized Shock Waves	250
5. A-C Conductivity of Ionized Shock Waves	253
6. Effect of Shock-wave Conductivity on Radio Waves	254
7. Electromagnetic Propagation Parameters for an Ionized Gas	255
8. Index of Refraction of Ionized Shock Waves	256
9. Attenuation of Radio Waves by Excitation	257
10. Attenuation of Radio Waves by Reflection	258
11. Depth of Penetration of Radio Waves into Ionized Gas	260
Chapter 10. Transverse Plasma Waves and Plasma Vortices	
by 0 . Buneman	270
1. Introduction	270
2. Plasma Perturbations as an Initial-value Problem	270
3. The Relativistic Equations of Motion	273
4. Small Perturbations of a Uniform Multistream Plasma	274
5. Isotropic Distributions	270
6. Wave Velocities within the Stream Velocity Range	281
7. Interpretation of the Laplace Transforms	283
8. The Removal and Dispersal of Vortices	287
•	201
Chapter 11. Plasma Power Absorption by J. E. Drummond	293
1. Introduction	293
2. Electron Dynamics and Statistics	294
3. Microwave Propagation	297
4. Migration	300
5. Example	301
6. Summary	302
Chapter 12. Microwave Diagnostics for Controlled Fusion	907
Research by C. B. Wharton	307
1. Introduction	307
2. Wave Propagation Coefficient in an Anisotropic Plasma	307

xii

CONTENTS

3.	Determination of Electron Density and	Co	llisio	n I	Fre	que	ency	\mathbf{in}	Pl	asn	na	
	Experiments											312
4.	Determination of Electron Temperature											319
5.	Application to a Sample Experiment	•		•	•	•	•	•	•	•	·	329
6.	Conclusion		•	•	•		•	•	•	•	•	330
Cha	pter 13. Plasma Magnetron Theory by J	. E.	Dri	ımn	ıon	d			•	•		332
1.	Inferences from Experiment and Assumpt	ions						•			•	332
2.	Development of Plasma Magnetron Theo	ry				•		•				337
3.	Summary and Conclusions							•	•		•	349
Cha	pter 14. Plasma Physics Research at M.	I.T.	by S	s. c	. B	rou	n					354
1.	Introduction				•			•			•	354
2.	Production of Plasma					•			•			354
3.	Study of Plasmas	·	•	•	•	•	•	•	•	•		359
Nar	ne Index	•	•	•			•	•	•	•	•	373
Sub	ject Index	•		•					•			387

xiv