CONTENTS

1
1
4
7
8
9
10
14
18
21
21
22
30
30
31
34
37
43
43
43 47
43 47 47

ix

CHAPTER 3. Charged Particle Trajectories in a Nonuniform Magnetic Field, Adjabatic Approximation	50
3.1. Belative importance of E and B	50
3.2. Adiabatic approximation	53
3.3. Adiabatic orbits in a pure magnetostatic field	55
3.4. Remarks concerning the general theory of adiabatic	
motion	61
3.5. Motion in a uniform magnetic field slowly vary-	
ing with time : magnetic compression	65
3.6. Motion in a rotational-symmetric static magnetic	
field	70
CHAPTER 4. Elastic Collisions Between Two Particles. Classical	
Theory	80
4.1. Description of the collision in the center-of-mass	00
system	80
4.2. The theorem of relative motion	84 or
4.3. The deflection	80 07
4.4. The interaction potentials in an ionized gas	8/
4.5. Examples for calculations of the deflection	99
4.6. Relations between the lab system and the center-of-	00
mass system	94
CHAPTER 5. Elastic-Scattering Cross Section	9 7
5.1. Definitions	97
5.2. Effective cross section and impact parameter	102
5.3. Relations between the cross sections in the center-	
of-mass system and the lab system	104
5.4. Quantum-mechanical definition and calculation of	
the cross sections	105
5.5. Identical particles	110
5.6. The total cross section and the momentum transfer	
cross section	111

CHAPTER 6. The Kinetic Theory of Fluids and the Hydrodyna-	
mic Definition of the Fundamental Quantities	115
6.1. The probability density in the phase space	115
6.2. The simple velocity and density distribution func-	
tions	118
6.3. The two-particle density and distribution functions	122
6.4. Multiple density and distribution function	128
6.5. The moments of f_1 and the hydrodynamic quantities	128
6.6. Relations between the hydrodynamic quantities	
and the microscopic anisotropies	13 2
6.7. The case of mixtures	139
APPENDIX 6.A. Calculation of the interparticle pressure	141
6A.1. The general formula	141
6A.2. A homogeneous gas	144
6A.3. An isotropic homogeneous gas	145
Appendix 6.B. Calculation of Ψ and Q	147
CHAPTER 7. Microscopic Evolution Equations	150
7.1. The Liouville equation	150
7.2. The system of the BBGKY equations	160
7.3. The Boltzmann equation with no second member.	
Vlasov's equation	165
7.4. The Boltzmann equation	167
7.5. The formulation of the microscopic equations for a	
mixture	172
CULERER & Droperties of Diserves in Thermodynamic Equili-	
hrium	174
8.1. The simple properties of a gas in thermodynamic	171
equilibrium when there are no external forces	174
8.2. The fine structure of thermodynamic equilibrium.	182
8.3. Binary positional correlations in a completely ioni-	100
zed plasma. The Debye length	188

х

CONTENTS

CONTENTS

xi

CONTENTS

APPENDIX 8.A. Calculation of binary positional correlations in a plasma	201
APPENDIX 8.B. Kinetic pressure and interparticle pressure in a plasma in thermodynamic equilibrium	207
CHAPTER 9. Macroscopic Equations for one Component of a Many-component Fluid	209
 9.1. Method of deriving the macroscopic equations 9.2. Equation of particle number conservation 9.3. Momentum transport equation 9.4. Transport equation for kinetic pressure 	210 212 213 217
APPENDIX 9.A. Plasma Oscillations	227
CHAPTER 10. Lumped Macroscopic Properties of Plasmas	232
10.1. Definition of lumped quantities	232
10.2. Equations of mass and electricity conservation	233
10.3. The usual hydrodynamic equation	234
10.4. Equation of evolution of j ; the generalized Ohm's	
law	235
10.5. "Magnetohydrodynamic" approximations	243
10.6. Plasma properties deduced from the lumped macro- scopic equations	248
APPENDIX 10.A. Discussion of the Hypothesis of Reciprocity $P_{ab} = -P_{ba}$	258
APPENDIX 10.B. Usual Formulas of Vector and Tensor Cal-	07 0
cutus	259
Index	263

xii