Contents

Preface	on						• • •							v vii xiii
Introduction .	•	•	•	•	•			•	•	•	•	•	•	1

Chapter 1 Terms derived from the left-hand side of the Boltzmann equation

1.	Introductory remarks. Starting point of the deductions	9
2.	Notation	12
3.	Moments of the left-hand side of the Boltzmann equation	19
4.	Moments of the left-hand side of the Boltzmann equation constructed with	
	multipliers based upon the components of the thermal velocities	21
5.	Flow equations for a gas without collisions	25
6.	Methods of approximation which can be used to close the system of equations	27
7.	Evaluation of the moments for a particular form of the distribution function .	33

Chapter 2 Collision effects for particles with spherically symmetric force systems

8.	Transfer integrals	39
9.	First steps in the evaluation of the transfer integrals	41
10.	Introduction of a particular assumption for the form of the distribution function	45
11.	The semilinear approximation	48
12.	Flow equations for a gas of particles with spherically symmetric force systems in	
	the semilinear and in the fully linear form	58
13.	Alternative form of some equations	64

ix

.

CONTENTS

14.	Equations for a gas with	th	a s	ingle	e pa	art	icl	e sj	peci	es				•	•		•				66
15.	Calculation of collision	n	inte	gral	s f	or	uı	nres	stric	cted	ve	loci	ty	diff	ere	nc	es	wit	hι	ın-	
	restricted temperatures	;	•	•	•		•	•	·	•	·	•	•	•	•		•	•	·	•	69

Chapter 3 Applications of the equations obtained in Chapter 2

Х

16.	6. Stationary radial flow of a gas with a single particle species													
17.	7. Diffusion phenomena in a gas with several species of particles. Flow equations													
	based upon the use of the mean mass flow velocity for the gas													
18.	Diffusion problems	92												
19.	Thermal diffusion in a binary mixture	95												
20.	Viscosity of a mixture of two gases	102												
21.	21. Viscous forces in a multiple mixture. Diffusion and heat flow in multiple mixtures													

Chapter 4 Gases with electrically charged particles. Calculation of formal cross sections for resistance coefficients

22.	Introduction. The shielding effect									108
23.	Binary collisions with Coulomb forces									113
24.	Application of a truncated Coulomb potential								•	116
25.	The Fokker–Planck approximation									119
26.	Moment equations deduced from the Fokker-Planch	k ec	luatio	on						123
27.	Application of a two-particle distribution function									126
28.	Equation for the correlation function F'_{st}									129
29.	Reduction of the integral (28.12)									135
30.	The remaining integrations in (29.9)									139
31.	Estimate of the contribution of the last line of Eq.	. (28	3.7).	Fina	al r	esu	lt fo	or t	he	
	resistance coefficient		•	•				•	•	145

Chapter 5 Application of the flow equations to problems of diffusion, electric conductivity, heat flow, and viscosity in gases with charged particles

32.	Diffusion and electric conductivity in a fully ionized gas with a single species of	
	positive ions, not influenced by a magnetic field	150
33.	Calculations for an unrestricted velocity difference between ions and electrons	
	and unrestricted temperatures	156
34.	Conduction of electric currents in an ionized gas in the presence of a magnetic	
	field	159
35.	Diffusion in a fully ionized gas with two species of positive ions	162
36.	Diffusion equilibrium in completely ionized hydrogen with a small admixture of	
	heavy positive ions	169

CONTENTS

37.	Plasma diffusion in a magnetic field	173
38.	Electric conductivity and diffusion in a partially ionized gas	180
39.	Influence of a homogeneous magnetic field upon the viscosity of a completely	
	ionized gas	190
40.	Effects of magnetic forces upon the pressure tensor in a gas in which the collision	
	frequency is small	196
41.	Some transformations of the flow equations	202
	(I) Parker's equations for the flow components perpendicular to the local	
	direction of the magnetic field	202
	(II) New forms of the relation between current and electric field in the presence	
	of a magnetic field (generalized forms of Ohm's law)	204
42.	Particle motion in a magnetic field described as cyclotron motion around a	
	drifting center	210
43.	Transportation of magnetic lines of force by a moving ionized gas	217
44.	Relations between the field variables on the two sides of a shock wave	221

Chapter 6 Application of the Bhatnagar–Gross–Krook approximation for the randomizing effect of collisions

45. Expression to replace the collision integral on the right-hand side of the Boltz-	
mann equation	26
46. Moments of the right-hand side of the Boltzmann equation evaluated on the	
basis of the Bhatnagar-Gross-Krook approximation	231
47. Complete flow equations based upon the Bhatnagar-Gross-Krook approxi-	
mation	33
48. Observations on the equations—Equations for a gas consisting of a single particle	
species	36
49. Alternative form of the flow equations	39
50. Gas consisting of particles with internal energy which is exchanged in all	
collisions	40
51. Higher approximations to solutions of the Boltzmann equation	247
52. Solution of an equation related to the "Boltzmann-Bhatnagar-Gross-Krook"	
equation by means of iterated integration	54
· · ·	

Chapter 7 Reactive collisions

53.	53. Extension of the Bhatnagar-Gross-Krook approximation to nonelastic (reac-												
	tive) collisions	60											
54.	General form of the flow equations for the system $s + t \rightleftharpoons a + b$.64											
55.	Calculation of mean values for reactive collisions	67											
56.	Flow equations for the system $s + t \rightleftharpoons a + b$	72											
57.	A reaction involving dissociation and recombination	76											
58.	Observations on the results obtained in Section 57	86											
	(I) Partial check and supplementary relations	86											
55. 56. 57. 58.	Calculation of mean values for reactive collisions $\dots \dots \dots$	6 7 7 8 8											

xi

CONTENTS

	(II)	Further equilibrium condition	on	s	•			•	•	•		•		•	•	•	288
	(III)	Temperature equations .				•				•				•	•	•	290
59.	Ioniza	tion and recombination .			•	•	•	•	•	•	•	•	•	•	•	•	291

Chapter 8 Interaction of a gas with a radiation field

60.	Introductory	consid	leration	s. Ex	tensi	ion	of	the	Bo	oltz	mar	ın	equ	atio	n a	and	con	n-	
	struction of n	noment	equati	ons				•	•	•	•	•	•		•	•	•	•	295
61.	The equation	of rad	iative tr	ansfe	r	•		•		•		•	•		•		•	•	301
62.	Connection o	f Eqs. ((61.17) a	and (6	51.20) w	ith 1	the e	ener	gy	and	mo	ome	ntu	mε	equa	tio	ns	
	for the partic	les		•					•	•		•	•				•	•	308
63.	Some relativi	ty trans	sformat	ions													•	•	312
64.	Observations	on the	coeffici	ents .	A an	d B	⊢ I	line	spe	ectra	a			•			•	•	316
																			222
Anı	notated referen	ices to	other pi	iblica	tions		·	·	·	·	•	·	·	•	٠	·	•	·	323
C.,h	inat Inday																		327
SUD	jeci index	• •	•••	• •	·	•	•	•	•	•	•	·	•	•	•	•	•	•	541

xii