CONTENTS

.

1. Introdu	iction		1
1.1		al Review of the Problem	2
		Unbounded Beam-Plasma Systems	3
		Bounded Beam-Plasma Systems	4
		Absolute Instabilities and Amplifying Wave	
1.2		tions and Mathematical Models	6
-	1		
		entifying Amplifying Waves and Absolute	
Instab			8
		nt of the Problem	8
2.2		Function Formalism for the Response to	
		zed Source	11
2.3	Proof of	Criteria on Amplifying Waves and Abso-	
	lute Inst		15
		$F(\omega, z)$ as a Sum of Normal Modes	16
	2.3.2	Analytic Continuation of $F(\omega, z)$	17
		Amplifying and Evanescent Waves	19
	2.3.4	Absolute Instabilities	20
	2.3.5	Response to a Pulse in Time	23
2.4		tion of Pulse Disturbances and Relations	
	Between	Temporal and Spatial Growth Rates of	
	Convecti	ive Instabilities	23
	2.4.1	Propagation of a Pulse Disturbance	24
	2.4.2	Connection Between Amplifying Waves	
		and Convective Instabilities	27
2.5	Commen	ts on the Application of the Criteria and	
	Some Ph	ysical Interpretations	29
		Amplifying Waves	29
		Absolute Instabilities	30
	2.5.3	Application of the Criteria in Simple Cases	
2.6	Discussi	ion	33
	2.6.1	Group Velocity of Propagating Waves	33
		Comparison with Previous Work	34
	2.6.3	Usefulness of Criteria	37
	2.6.4	Amplifying Waves in the Presence of an	
		Absolute Instability	38
2.7	Example	s	39
	2.7.1	Weak-Coupling Dispersion Equations	39
	2.7.2	Double-Stream Interactions	42

х	Con	ntents	Contents	
3. B	eam-Plasma Interactions in a One-Dimensional System	n 47	Appendix A	Comparison of the M
	. Longitudinal Interactions	48		and Shapiro
	3.1 Cold Plasma	48		
	3.2 Dispersion Equation for a Warm Plasma	49	Appendix B	The Landau Contour
	3.3 Weak-Beam Theory	53		for a Hot Plasma
	3.4 General Criteria for a Reactive-Medium Instabil	-		
	ity with Ions	59	Appendix C	Derivation of One-Di
	3.4.1 Cold Ions	59		Equation
	3.4.2 Warm Ions	61		
	3.5 Strong Reactive-Medium Amplification with Ions	63	Appendix D	Classification of Lon
	3.5.1 Kinetic Power	67		Instabilities
	3.5.2 Finite Ion Temperature	68		
	3.5.3 Relativistic Temperatures	70	Appendix E	An Instability Conditi
В	. Transverse Interactions	71		ш
	3.6 Dispersion Equation for Transverse Waves	71	Appendix F	Transverse Beam Wa
	3.7 Transverse Waves on Electron Beams and Weak-			0 · · · · · D'
	Coupling Predictions	73	Appendix G	Quasi-static Dispers
	3.7.1 Electron-Beam Waves	74	A 1. TT	
	3.7.2 Weak-Coupling Predictions	75	Appendix H	Absolute Instability of
	3.8 Interaction at the Ion Cyclotron Frequency	76	A 11. T	Manataniaalla Daara
	3.8.1 Cold Plasma	76	Appendix 1	Monotonically Decrea
	3.8.2 Warm Plasma	78		p^2 vs. q^2 Relation
	3.9 Alfvén Wave Instability	81	Annondir T	Disponsion Equation
			Appendix J	Dispersion Equation
	teractions with a Cold Plasma in Systems of Finite			Amplification
T	ransverse Dimensions	84	Annandir K	Condition for an Abso
	4.1 Interactions in a Waveguide Filled with a Weak		Appendix K	Condition for an Abs
	Beam and a Plasma	85	Gloggamy of	Common Symbols
	4.1.1 Space-Charge Wave Interactions	88	Glossaly of	Common Symbols
	4.1.2 Cyclotron-Wave Interactions	92	References	,
	4.2 Thin-Beam Interactions	97	References	
	4.2.1 n = 0 Modes	99	Index	
	$4.2.2 n = \pm 1 \text{ Modes}$	102	muex	
	4.3 Interactions in an Infinite Magnetic Field	108		
	4.3.1 Filled Waveguide.	108		
	4.3.2 Unfilled Waveguide	112		
5 In	teraction with lons in a Hot-Electron Plasma	118		
5. 11	5.1 Plasma Dispersion and Weak-Beam Interactions	119		
	5.1.1 Plasma Dispersion	120		
	5.1.2 Interaction with a Weak Beam	121		
	5.1.3 Resistive-Medium Amplification	123		
	5.2 Strong Interaction with Ions	124		
	5.2.1 Absolute Instability	125		
	5.2.2 Infinite Amplification at ω_{pi}	129		
	5.2.3 Summary of Results	132		
	5.2.4 Extension to Lower Temperatures	132		

Contents		xi
Appendix A	Comparison of the Method of Fainberg, Kurilko and Shapiro	. 139
Appendix B	The Landau Contour and the Stability Criteria for a Hot Plasma	143
Appendix C	Derivation of One-Dimensional Dispersion Equation	148
Appendix D	Classification of Longitudinal Weak-Beam Instabilities	156
Appendix E	An Instability Condition for Lossless Systems	158
Appendix F	Transverse Beam Waves	160
Appendix G	Quasi-static Dispersion Equation	162
Appendix H	Absolute Instability of Space-Charge Waves	165
Appendix I	Monotonically Decreasing Character of the $p^2 vs. q^2$ Relation	168
Appendix J	Dispersion Equation for Resistive-Medium Amplification	171
Appendix K	Condition for an Absolute Instability	172
Glossary of Common Symbols		
References		178
Index		185