PREFACE		:
CHAPTER I	BASI IN P	C MATHEMATICAL CONCEPTS OF WAVES AND RAYS
	1.	The Wave Equation
	2.	Homogeneous Isotropic Media
		Dispersive Media
	3.	Non-Homogeneous Isotropic Media; The Geometrical Optics
		Bays 9
		Nature of the Approximation.
		Amplitude Variations and the Fluid Analogue
	4.	The Fourier Transform and Wave Packets in
		Homogeneous Media
		Plane Monochromatic Waves
		Wave Trains
		Wave Packets
		Locally Plane Waves
		Propagation
		The Principle of Stationary Phase
		Bandwidth and Uncertainty Relations
	5.	Wave Packets in Non-Homogeneous Media
		Absorbing Media
	6.	Fermat's Principle and Its Extension
		Generalization Postulates
	7.	The Poynting Vector and Energy Flow
CHAPTER II	THE MAGN	HOMOGENEOUS ELECTRON PLASMA IN A UNIFORM
	8.	The Lorentz Theory
	9.	Propagation in an Isotropic Conducting Medium
		Refraction and Extinction Indices
		Cases for Limiting Frequencies
		Relations Between the Electric and Magnetic Field Vectors
	10.	Propagation in a Homogeneous Anisotropic Medium
		Anisotropy
		Dispersion Equation
		Conductivity Tensor
		Propagation in an Ionized Medium
		Mechanism of Propagation of the Electromagnetic Waves 51
		The Plasma—Crystal Optics Analogy

	11.	The Plasma in an Applied Magnetic Field
		Gyrotensor Ω
		Effective Displacement
		Dispersion Equation
	12.	The Electromagnetic Fields in the Non-Conducting Crystal
	13.	Electromagnetic Fields in the Birefringent Plasma 61
		Canonical Transformation to a Mathematical System 62
		Principal Dielectric Constants of the Plasma
		Dispersion Equation for the Plasma
		The Electromagnetic Field in the Plasma
	14.	The Appleton-Hartree Formula
1		Ordinary and Extraordinary Modes of Propagation 71
	15.	Polarization of Light in the Plasma
		The Polarization Ellipse
		Representation and Interpretation of
	16	Plasma Oscillationa 79
	10.	7
	17	A Compositional Discoversion Franchism for Descention
	11.	of Waves in an Electron Plasma
	18.	Faraday Rotation
		Circular Polarization
		Longitudinal Propagation
		Collision Effects 89
		Magnetic Effects 90
		Power Transmission 90
		Special Cases 03
		Transverse Pronagation 07
	10	Faraday Bototion: Concerci Cocc
	17.	
CHAPTER III	A RÉ SHOC	SUMÉ OF THE HYDRODYNAMICAL EQUATIONS AND K CONDITIONS FOR GASES
	20.	Basic Considerations and Nomenclature. Viscous and Compressible Fluids
	21.	Basic Dynamical Assumptions
	22.	Variable Boundaries and Differentiation
		of Integrals
	23.	The Equation of Continuity
	24.	The Stress Vector and Stress Tensor
	25.	The Distortion Tensor
	26.	Pressure and Viscosity Tensor
	27.	The Relation Between the Distortion and
		Viscosity Tensors
	28.	Homogeneous and Isotropic Fluids
	29.	The Navier-Stokes Equations
	30.	Perfect or Ideal Gases-The Equation of Energy
	31.	The Thermal Conductivity
	32.	Entropy Considerations
	33.	The Equations for Ideal Gases
	34.	Bernoulli's Equation

	35.	Shock Waves in an Ideal Gas-The Concept	
		of Singular Surfaces	
	36.	The First Shock Condition	
	37.	The Rankine-Hugoniot Relation	
	38.	The Combined Shock Conditions	
	39.	The Density and Entropy Changes in	
		Passage Through a Shock Wave	
CHAPTER IV	THE	HOMOGENEOUS IONIC PLASMA IN A MAGNETIC FIELD	
	40.	The Basic Equations	
		Oscillations of an Electron Plasma in a Uniform Magnetic Field	
		Longitudinal Magnetic Field, $\omega_{\pi} = 0$	
		Conditions for Propagation	
		Pure Transverse Magnetic Field, $\omega_r = 0$	
	41.	Electromagnetic Waves in the Plasma	
		Longitudinal Propagation	
		Transverse Propagation	
	42.	Magnetohydrodynamic Waves-Low Frequency Phenomena 164	
		General Low-Frequency Solutions	
	43.	Fields and Currents in Weakly Ionized Media	
		Dispersion Relation	
		Current and Force Densities	
		Longitudinal Component, J_1	
		Transverse Component	
		Longitudinal Component	
		Transverse Component, \mathbf{F}_{τ}	
	44.	Approximations-(High Collision Frequencies)	
		Low Collision Frequencies	
	45.	Related Investigations	
		Velocity Modes	
		Pressure Modes	
		Ideal Compressible Fluid Zero Viscosity, No	
		Expansive Friction, Zero Heat Conductivity	
		Normal Modes	
		Ideal Elastic Solids	
		Shear Modes	
		Shear Compression Modes	
		Torsional Magneto-Hydrodynamic Waves	
		Cylindrical Velocity Modes	
	46.	The Reflection and Refraction of Magneto- Hydrodynamic Waves	
CHAPTER V	ENER	GY CONSIDERATIONS AND ELECTRODYNAMICS	
	47.	Electromagnetic Force-Poynting's Theorem	
	48.	Complex Poynting Theorem	
		Moving BodiesRelativistic Considerations	
	49.	Forces and the Electromagnetic Stress-Tensor	
	50.	Conducting Fluids	
	51.	Energy and Work Relations	

	52.	The Thermodynamics of a Conducting Fluid
	53.	An Alternative Formulation of the Energy Relation 240
	54.	The Energy Equation for an Ionized Gas in the Presence of a Magnetic Field
	55.	Some Comments on Irreversible Thermodynamics
	56.	The Energy Equation for Magnetohydrodynamics
	57.	Fully Ionized Gas in a Strong Magnetic Field
	58.	Circuit Considerations for a Plasma.
	00.	Thermal Energy Equation 252
		Momentum Equation 253
		Generalization of Ohm's law 253
		Lumped Departers
	50	Cinquit Dunamica 250
	59. 60	Magnetabudaedunemia Shooka
	21	The Concernent in Low 265
	01.	
	62.	Ine Entropy Change Across a Shock Front
	63.	Dimensional Considerations — Scaling in Magnetohydrodynamics
	64.	Remarks on the Electrodynamics of Moving Matter
		In Vacuum
		In Isotropic Matter
		In Anisotropic Matter
		Field Quantities
		The Constitutive Equations in Non- Conducting Isotropic Material
		Wave Propagation in Moving Non-Conducting Isotropic Matter
		Electromagnetic Energy Transport
CHAPTER VI	THE	STBUCTURE OF WAVES IN NON-HOMOGENEOUS MEDIA
	65.	Propagation in Non-Homogeneous Media
		Bays in Isotronic Media
		Energy Attenuation 286
		The Path of a Light Ray in an Inhomogeneous Absorbing Medium
		Application of the Extended Fermat Principle to a Stratified Medium
	66.	Propagation of Electromagnetic Waves in Unbounded Non- Homogeneous, Anisotropic Media, Derivation of the
		Basic Equations
		Special Case of a Homogeneous, Anisotropic Plasma 295
		Isotropic, Inhomogeneous Plasma
	67.	Properties of the Waves when Inhomogeneities Are Present 298
		Longitudinal Propagation
		Transverse Propagation
		Transverse Variations (Longitudinal Propagation) 300
		Ordinary and Extraordinary Waves (Transverse Propagation)
	68	Befractive Index Considerations 303
		Dielectric Tensor Varying in the Direction of Propagation
		Ordinary and Extraordinary Waves in the Case of the Dielectric Tensor Varying in the Direction of Propagation

	69. Reflection Coefficients	05
	Stratified Media	08
	70. Cylindrical Waves	11
	Homogeneous Anisotropic Case	13
	Reflection from a Homogeneous Cylindrical Plasma 3	14
	Cylindrically Stratified Media	17
	71. Continuous Stratified Media	22
	Reflection and Transmission Operators 3	23
	The Structure of the Operators L and K	24
	The Integral Equation	28
	Properties of the Matrices \mathbf{A}_r and \mathbf{A}_t	32
	72. Functional Analysis and Variational Formulae 3	35
CHAPTER VII	THE THEORY OF PROPAGATION OF RAYS IN AN INHOMOGENEOUS, ANISOTROPIC, DISPERSIVE AND ABSORBING MEDIUM	845
	73. The Variational Principle	845
	Geometrical Representation	354
	Reciprocal Surfaces	856
	74. Derivation of the Ray Path Equations	363
	75. An Equivalent Formulation	868
	76. Ray Propagation	372
	77. The Characteristic Surfaces	374
	78. The Group Property of the Construction	375
	79. Reflection and Refraction	378
	80. Snell's Law for an Anisotropic Medium	382
	81. Curvature of the Rays	384
	82. Group Velocity from Ray Theory-An Imbedding Process	387
	83. The Equivalent Path and Absorption	393
	84. Absorption Considerations	395
	85. The Connection Between Hamilton's Eauations, Pulses and a General Variational Principle	399
	86. An Alternative Description of the Ray Direction	402
	87. The Ray-Wave Connection in a General Refracting Anisotropic Medium	105
	88. The Ray Path Equations in a General Coordinate System 4	410
	89. The Ray Path Equations in Terms of the Physical Components	1 19
	90. The Ray Path Equations in Terms of the Physical Components for an Orthogonal Curvilinear System	421
	91. The Spread or Dispersion of the Rays Based on the Concept of Geodesic Deviation	423
	92. The Approach to Ray Propagation in Anisotropic Media via Maxwell's Equations	427
	93. Non-Homogeneous Media	429
	94. Amplitude Variations—Field and Amplitude 4	134
CHAPTER VIII	PROPAGATION PHENOMENA BASED ON THE BOLTZMANN EQUATION—MICROSCOPIC CONSIDERATIONS	441
	Introductory Remarks	441

	95.	Preliminary Concepts	
		Shielding	
		Equilibrium Considerations	
		Non-Equilibrium Considerations	
	96.	Phase Space; The Liouville and Boltzmann Equations 453	
	97.	Deductions from the Boltzmann Equation	
		Self Consistent Formulation	
		Moments of the Boltzmann Equation	
		Equations of Stress and Heat Flux	
		Stress Equation	
		Heat Flux Equations	
		The Distribution Function	
		Alternative Representations of the	
		Conservation Laws	
		Plasma Diamagnetism	
		A Virial Theorem	
		Self Confinement of a Plasma	
	98.	The Collision Term	
		Plasma Oscillations and Collective Coordinates 486	
		The Close Collision Term	
		The Fokker-Planck Term	
		The Spherical Polar Representation of Boltzmann's Equation 495	
		The Fokker-Planck Term in Spherical Polars	
	99.	Solutions of Boltzmann's Equation 505	
		Thermodynamic Considerations 507	
	100.	Propagation Considerations 513	
	2001	Polarization	
		Computational Considerations 518	
		Statistical Meaning of the Dielectric Coefficients 520	
		Microscopic Versus Macroscopic Theory	
		Collision Effects at Low Frequency 523	
		The Magneto-Hydrodynamic Approximation.	
		Low Collision Frequency.	
CHAPTER IX	RADIA	TION IN A PLASMA	
		Introductory Remarks	
	101.	Radiative Processes in an Ionized Gas.	
		Cross-Section for Absorption by a Free Electron-	
		The Absorption Coefficient	
	102.	Radiation in Anisotropic Media	
	103.	The Tensor (or Dyadic) Green's Functions	
	104.	General Case	
		Power Dissipation and Quadratic Forms	
	105.	Wave Excitation	
	106.	Radiated Power	
	107.	Electromagnetic Scattering and Reflection	
	108.	Radiation from a Slot	
	109.	Radiation from an Elementary Current-Sheet Dipole 580	
		Problems on Chapters	
		Indexes—Author, Subject	
		xiv	