Contents

	Preface	ix
1	Introduction	1
2	The multi-beam laser system KAL'MAR and its diagnostics	15
2.1	Characteristics of the powerful nine-beam laser system	15
2.2	The KAL'MAR oscillator	18
2.3	The spectrum of the heating radiation	19
2.4	Diagnostics of the brightness and energy characteristics of the	
	laser and its optimisation	21
2.5	The diagnostic system for non-steady plasmas	, 28
3	Optical diagnostics of the inhomogeneous corona of a plasma	31
3.1	Specific features of optical probing of a highly inhomogeneous	
	plasma	32
3.2	The required parameters of the probing radiation	36
3.3	Sources of the probing radiation	39
3.4	Types of interferometer	47
3.5	Methods of numerically processing the interferograms	56
3.6	Study of the motion of the n_c and $n_c/4$ density regions	67
4	Investigation of strong shock waves by active optical diagnostics	71
4.1	Diagnostics for spherical shock waves arising in the	
	background gas	72
4.2	General properties of the image formed when probing ionising	
	shock waves	74
4.3	Specific feature of the use of optical methods in the	
	investigation of ionising shock waves: processing the	
	experimental data	81
4.4	A comparison of the results of the various optical methods	
-	used to diagnose a shock wave	86
5	Methods for diagnosing the particle emission from	
	laser-produced plasmas	89
5.1	Specific feature of the measurement of the ion energy spectrum	
5.0	trom an inertially confined plasma	90
5.2	1 ime-ot-flight collector measurements	93
5.5	Types of mass spectrometer	97
5.4	I nomson mass spectrographs	103

v

vi Contents

6	Investigation of the X-ray continuum emission from the plasma	111
6.1	The methods of measuring the spectral distribution of the	
	X-ray continuum	112
6.2	X-ray detectors and their application	114
6.3	Determining the spectrum of the X-ray continuum	122
6.4	X-ray imaging techniques for the self-emission from the	
	plasmas	127
6.5	Mathematical processing of the X-ray pin-hole camera images	133
7	Structure and dynamics of shock waves established during the	
	plasma expansion in the background gas	137
7.1	General properties of shock waves generated by an expanding	107
	plasma	137
7.2	The effect of electron thermal conductivity on the structure of	
	the shock wave: determining the velocity of the shock wave	1.40
a 2	from the width of the pre-heated region	142
1.3	The initial stage of motion of the snock wave. Determination	
	of the plasma temperature and the evaporated mass of the	146
7 4	target	146
/.4	Dynamics of an folising shock wave during adiabatic	150
75	expansion of the gas	150
7.5 0	The anargy belongs for substigally interediated targets.	159
o	diagnostics and its investigation	162
Q 1	Calorimetry in investigation of the energy balance	162
87	Other methods of measuring the energy balance	167
83	Determining the energy absorbed by the plasma from the	107
0.5	dynamics of the shock wave	169
8.4	Specific limitations on methods of measuring the energy	10)
0.1	balance	174
8.5	Studies of the energy balance for heating of spherical targets	178
9	Scattering of the laser radiation in the vicinity of the critical	
	density surface	189
9.1	Mechanisms of second harmonic generation in a	
	laser-produced plasma	189
9.2	The angular distribution and polarisation of the second	
	harmonic	194
9.3	The spectral distribution of the second harmonic emission	197
9.4	Intensity of the second harmonic emission	206
9.5	Diagnostic methods for the critical density region for	
	inhomogeneous plasmas created on shell targets using second	
	harmonic emission	210
10	Scattering of laser radiation in the vicinity of the $n_c/4$ density	220
10.1	Parametric turbulence in the $n_c/4$ region, the generation of	
	multiple sub-harmonics	220
10.2	Polarisation and the angular distribution of the $3\omega_0/2$	
	harmonic	226
10.3	Spectral distribution of the $3\omega_0/2$ harmonic emission	231
10.4	Evolution of the spectrum and intensity of the $3\omega_0/2$ harmonic	~
	during the laser pulse	242

Contents

10.5	The intensity of the $3\omega_0/2$ emission	246
10.6	Experimental studies of other half-integer harmonics of the	
	laser frequency	252
10.7	The generation of fast electrons by the two-plasmon decay	054
11	instability	256
11	investigation of parametric turbulence using Kaman scattering	260
11 1	Raman scattering as a diagnostic method of an	200
11.1	inhomogeneous plasma (the general picture)	260
11.2	Observation of the two-plasmon instability by optical probing	
	of the plasma	264
11.3	Measurement of the spectrum of parametric turbulence in the	
	$n_c/4$ region	267
11.4	Scattering of probing radiation in the critical region	275
12	The formation and dynamics of the plasma corona using	• = • ·
	spherical targets	279
12.1	The hydrodynamics of the corona of a laser-produced plasma:	2 00
12.2	an analytical description Experimental determination of the spatial distribution of the	280
12.2	Experimental determination of the spatial distribution of the	200
123	Non-linear processes arising in the vicinity of the critical	290
12.5	density and their effect on the plasma hydrodynamics	302
124	Experimental studies of perturbations in the density profile in	502
12.1	the plasma corona	309
13	Investigation of hydrodynamic acceleration of targets	319
13.1	Measurement of the hydrodynamic efficiency in foil	
	experiments	320
13.2	Experimental investigations of the ablation rate	327
13.3	Discussion of the results	333
14	Investigation of the energy spectrum of superthermal particles	
	emitted from a plasma	339
14.1	The mechanism of acceleration of ions	339
14.2	experimental investigation of fast particles in faser-produced	245
15	Studies of the compression dynamics of shell targets	343
15.1	Time-integrated measurements of the implosion velocity for	551
	microspheres	358
15.2	Optical recording of the motion of the critical region	361
15.3	Evolution of the shape of the second harmonic spectrum and	
	the velocity of the collapsing shell	364
15.4	Observation of a perturbation wave on the density profile of	
	the corona of shell targets	368
15.5	Application of X-ray streak cameras to the diagnosis of	
1.5.4	compression	370
15.6	Probing the plasma using X-ray radiation generated from an	075
12	external source	375
10 16 1	Investigation of the state of the compressed core.	383
10.1	compression in the different regimes	286
	compression in the universities	500

vii

viii Contents

16.2	X-ray diagnostics of the compressed core	398
16.3	Particle and nuclear activation diagnostics for the compressed	
	core	404
16.4	Recording of the neutron emission	412
16.5	Investigation of the parameters of the plasma in the	
	supercompressed state obtained by spherical heating of	
	thermonuclear targets	415
	References	423
	Index	473