Table of Contents

WELCOME ADDRESS I
OPENING AND INTRODUCTION ······ II
EXECUTIVE SUMMARY V
SUMMARY OF THE WORKSHOP VII Agenda Participants List
PLENARY TALK
(1) Overview of PFM/PFC Research in US, W. B. Gauster(SNLA) ····· 1
(2) Layered and Doped Materials for Plasma Facing Components, H. Conrads (KFA Jülich) ••••••••••••••••••••••••••••••••••••
TOPICS PRESENTATION AND DISCUSSION
TOPICS 1: How to bridge Present Large Machines' Experiences to the Design Activities of the Next Step Devices?
(3) How to Gap the Experience Gained in Today's Large Fusion Devices to the Next Step Devices?, R. Behrisch (MPI) ····· 91
(4) Results of JET and Implications for Next Step Devices, K. J. Dietz (JET) ····· 103
(5) Experiences with Graphite Divertor Plate in JT-60 Lower X-Point Operation, T. Ando (JAERI)
(6) Comment from TFTR, M. Ulrickson (SNLA) •••••••••••••••••• 147
TOPICS 2: Problem Area of PFC Aspects
(7) Overview: Heat Removal Limitations of Present PFC Design and Possibilities for Improvement, R. D. Watson & R. E. Nygren (SNLA) ••••••••••••••••••••••••••••••••••••
(8) Comment on Heat Exhaust of PFC, M. Seki (JAERI) ····· 177
(9) Gaseous Divertor Experiment by PISCES-A, L. Schmitz(UCLA) $\cdot \cdot$ 187
(10) Comment, H. Nariai (Tsukuba Univ.) ····· 197
TOPICS 3: Impact of Neutron Effects to PFM and PFC Feasibilities for ITER
(11) Overview: Neutron Effects and Materials Selection for the Next Step Plasma Facing Components, T. Burchell (ORNL). 203

(12)	Chang Irrad	ge of Thermal Properties of Graphite by Neutron liations, T. Maruyama (PNC) ••••••••••••••••••••••••••••••••••••	221		
(13)	1. Ke 2. Ho Ma	ey Properties for PFC Materials ow to Correlate the Change of Micro Structure with aterial Properties?, T. Oku (Ibaraki Univ.) ••••••••••	237		
(14)	How t T. Ta	to Establish the Data Base without 14MeV INS?, anabe (Osaka Univ.) ••••••	249		
TOPICS 4: Trapping and Detrapping of Implanted Hydrogen Isotopes					
(15)	Overv Isoto	view: Trapping and Detrapping of Implanted Hydrogen opes, K. L. Wilson (SNLL) •••••••••••••••••••••••••••••••••••	161		
(16)	Thern Graph	nal Desorption Spectra of Hydrogen and Hydrocarbons from nite Implanted with Hydrogen, M. Yamawaki(Univ. Tokyo)	287		
(17)	Compe in Ma	ensation Effects on the Diffusion Constants of Hydrogen aterials, K. Watanabe & K. Ashida (Toyama Univ.) ••••••	303		
(18)	Diffu Compe	ision Constants of Hydrogen Isotopes in Graphite and ensation Effect, K. Ashida & K. Watanabe (Toyama Univ.)•	309		
(19)	Ion-1 from	Induced and Thermal Release of Hydrogen Isotopes Graphite, K. Morita (Nagoya Univ.) ••••••••••••••••••••••••••••••••••••	333		
(20)	Hydro A. A.	ogen Tapping and Re-Emission for Graphite, . Haasz (Univ. of Toronto) ••••••••••••••••••••••••••••••••••••	355		
(21)	Hydro H. At	ogen Solubility in Neutron Irradiated Graphite, tsumi (Kinki Univ.) ••••••••••••••••••••••••••••••••••••	361		
(22)	Hydro	ogen Behavior in Mo and W, T. Tanabe (Osaka Univ.) ····	367		
TOPI	CS 5:	Erosion of Plasma Facing Materials under Off-Normal Operating Conditions			
(23)	Overv Test	view: Simulation of Disruptions in Different HHF Facilities, J. Linke (KFA Jülich) ••••••••••••••••••••••••	379		
(24)	Evalı Disrı	ation Process of the Thermal Erosion during uptions for ITER, H. Bolt (Univ. Tokyo) •••••••••••••	401		
(25)	Eros: Cond:	ion of Plasma Facing Materials under Off-Normal itions, J. G. van der Laan (NET) ••••••••••••••••••••••••••••••••••••	421		
(26)	Effor Estal	rts towards Runaway Electron Damage Data Base olishment, H. Bolt (Univ. Tokyo) ••••••••••••••••••••••	441		
TOPIC	CS 6:	Erosion of Plasma Facing Materials under Normal Operating Conditions			

(27)	Overview: Erosion of Plasma Facing Components, A. A. Haasz (Univ. of Toronto)	459
(28)	Evaluation of Bulk-boronized Graphites as Plasma-Facing Materials for ITER, Y. Hirooka (UCLA) ••••••••••••••••••••••••••••••••••••	495
(29)	Erosion/Redeposion in the DIII-D Divertor, K. L. Wilson (SNLL)	523
(30)	Data from MPI Garching, R. Behrisch (MPI-Garching)	535
TOPIC	CS 7: Present Status of Material Data Base	
(31)	Overview on Existing Datasets for Plasma Facing Materials, H. Bolt (Univ. Tokyo) ······	551
(32)	PSI Data obtained by Surface and Vacuum Science Laboratory, Hokkaido University, T. Hino (Hokkaido Univ.) ••••••••••••	569
TOPIC	CS 8: Possibilities of Medium- and High-Z Plasma Facing Materials for Future Large Machines	
(33)	Overview: Possible Plasma Scenario Compatible with High Z Plasma Facing Material, K. Itoh (NIFS) ••••••••••••••••••••••••••••••••••••	587
(34)	Operation Experiences of Ultra Long Pulse TRIAM Mo-Limiter Discharge, N. Yoshida (Kyushu Univ.) ••••••••••	667
(35)	Comment from JT-60(II) Material Aspect and Helium Recycling, H. Nakamura (JAERI) ······	705