Contents

Foreword		•	•	•	٠	•			•	•			•		vii
†A. SINGL	E CRY	YSTAI	, SPI	JTTE	RING	I (the	eory)								
A computer approximati	simula on (M.	tion o <u>.</u> T. RC	f mon BINS	o <i>crys</i> SON a	s <i>tal sp</i> and I.	<i>utterir</i> M. TO	ng in th RREN	he bin IS)	ary co	ollisic	n				*
Binding ener	gies in	cubic	meta	l surfa	aces (D. P. J	ACKS	ON)							1
<i>Computer si</i> and H. T. He	<i>mulati</i> DLCOI	on of s MBE)	putte	ring l	// (D.	E. HA	RRISC)N, Jr	., W. 1	L. MC	DORI	E, Jr.			*
Low energy (A. VAN VI	<i>sputte</i> EEN an	<i>ring co</i> d J. M	<i>llisioi</i> . FLU	n phe JIT)	nome	na in t	he surf	face oj	f meta	al sinį	gle cr	ystals	5	•	*
B. SINGLE	CRYS	STAL	SPUT	FTER	ING	II (exp	oerime	nt)						<i>i</i>	
Sputtering o	f single	e cryst	als (R	. J. M	[cDO]	NALD)								*
Anisotropic (W. O. HOF	<i>emissi</i> E R)	on in s	ingle	crysta	ıl spu	ttering.	. Measi	ureme	nts of	n hcp	singi	le cry	stal	s	7
Systematic v single crysta H. SCHUMA	ariatio ls (L. 1 CHER	<i>n in (1</i> 1. CHA 2, S. ST	10) sį DDE TEEN	oot st RTOI STRU	<i>ructu</i> N, A. JP an	re on s JOHA d P. E.	putter NSEN HØJL	ed eje , L. SA .UND)	ction ARHC	<i>patte</i>)LT-I	erns f KRIS	rom TENS	SEN	,	*
Dependence on the ion ir V. E. YURA	of the cidenc SOVA	space e angl	distri e (V.	<i>butio</i> M. BU	n of p JKHA	article NOV,	s sputt V.G.	tered j MOR	from a	<i>monc</i> V and	o <i>cryst</i> l	talline	e coj	pper	15
Study of spi Approaching V F VIIRA	ttering plane	g and r (001),	eflect of C M	ion o U sing	f ions gle cry	from s vstal (I	some h L. B. Sl	<i>igh in</i> HELY	dex p AKIN	olanes N, I. C	:? G. BU	JNIN,		•	
Angular and (H. E. ROOS	tempe SENDA	AL ar	depend J. J	<i>ndenc</i> I. Ph.	ce of s ELIC	sputter CH)	ing in 1	mono	crysta	Illine	targe	ets		•	*
C. SURFAC	CE AN	D DE	PTH	ANA	LYSI	S									
Depth profil sputtering ((e meas 3. K. W	ureme 'EHNE	nts by ER)	vario	ous su	rface a	ınalysi	s meth	nods a	comb	ined .	with			*
A depth ana	lysis oj	f cleav	ed mi	ca sur	rfaces	monit	ored b	y AU	GER	spect	rosco	ру			10

CONTENTS

Implications in the use of secondary ion n concentration profiles in solids (F. SCHU	nass spectron LZ, K. WITT	netry to in MAACK a	<i>ivestige</i> and J. I	<i>ite im</i> j MAUL	ourity .) .	
Depth distribution of implanted atoms undiffusion (J. P. BIERSACK)	der the influ	ence of su	erface e	erosion	ı and	
D. SPUTTERING OF COMPOUNDS A	ND ADSOR	BED LAY	/ERS			
The sputtering of oxides. Part I: A survey of NGHI Q. LAM)	of the experi	imental res	sults (F	R. KEI	LY aı	nd
Sputtering patterns of alkali halides under	electron irra	diation (R	. BRO	WNIN	G)	
Sputtering of adsorbed material (H. F. WI	NTERS)				•	•
E. POLYCRYSTALLINE SPUTTERING	I (theory)					
Energy spectra of atoms sputtered by ion l	beams (P. SIG	GMUND)	•	•	•	•
Unified sputtering theory (W. BRANDT and	nd R. LAUBI	ERT)		•	•	•
Sputtering and backscattering of keV light (R. WEISSMANN and P. SIGMUND)	ions bombai · · ·	rding rand · · ·	om tar	gets		
Contributions of backscattered ions to spu energy (R. WEISSMANN and R. BEHRISC	ttering yield CH) .	s dependir	ng on p	rimary	ion ,	•
F. POLYCRYSTALLINE SPUTTERING	II (experin	nent)				
Sputtering-yield studies on silicon and silve	er targets (H.	. H. ANDE	ERSEN	and		
n. L. BAI)	•••		•	•	•	•
(H. H. ANDERSEN).	· · ·		<i>oj cop</i>	per ·	•	•
Variation of the sputtering yield of gold w C. M. HICKS and A. P. NEOKLEOUS)	ith ion dose	(J. S. CO) 	LLIGO	N,		•
Influence of the bombarding angle on low materials (H. OECHSNER)	energy sputt	tering of p	olycry.	stallino	e	
Sputtering yields of niobium by deuterium B. M. U. SCHERZER and H. VERBEEK)	i in the keV	range (W.	ECKS	ſEIN,		
A novel quantitative method for identifyir J. COBURN and E. TAGLAUER)	ıg sputtered · ·	neutral sp · · ·	ecies (l	E. KA'	Y,	
The angular distribution of sputtered copp K. RÖDELSPERGER and A. SCHARMAN	ver atoms (W NN) .	. KRÜGE	R,			•
Mean velocity of particles ejected from van sputtering with high energetic noble gas io	rious polycry ns (W. KRÜ	<i>stalline m</i> GER and A	<i>etal su</i> A. SCH	rfaces ARM	<i>by</i> ANN)	
G. SCATTERING OF IONS I						
Current trends in ion scattering from solid V. A. MOLCHANOV)	surfaces (E.	S. MASHI	KOVA	and		

xii

CONTENTS	xiii
Low energy ion reflection from metal single crystals (A. VAN VEEN)	*
Estimation of ion scattering by atomic chains on single crystal surfaces (S. D. MARCHENKO, E. S. PARILIS and N. Y. TURAYEV)	99
The peculiarities of ion scattering by crystals due to surface halfchannels formed by close packed atomic rows (Yu. G. SKRIPKA)	103
Energy distributions of protons with primary energy of 15 keV backscattered from a Ni single crystal (W. ECKSTEIN, H. G. SCHÄFFLER and H. VERBEEK)	107

H. SCATTERING OF IONS II

Influence of ion bombardment induced radiation damages in the crystal lattice on the angular regularities in ion scattering (U. A. ARIFOV and A. A. ALIYEV) .	113
Bombardment induced surface damage in a Nickel single crystal observed by ion scattering and LEED (W. HEILAND and E. TAGLAUER)	117
Accommodation coefficients for low-energy ions on metal surfaces (U. A. ARIFOV, D. D. GRUICH, G. E. ERMAKOV, E. S. PARILIS, N. Y. TURAYEV and F. F. UMAROV	123
The low angle scattering of 275 KEV He ⁺ ions from a tungsten crystal surface (A. D. MARWICK, M. W. THOMPSON, B. W. FARMERY and G. S. HARBINSON) .	*
Measurement of the back-scattering of fission fragments from thin metal films (A. VETTER, G. FIEDLER, K. GÜTTNER and H. SCHMIDT)	129
Surface study by application of noble gas ion backscattering technique(K. AKAISHI)<	135

I. SECONDARY ION EMISSION I

Theoretical models in secondary ionic emission (P. JOYES)		139
Secondary ion emission of alloys in relation with their electronic structure (G. BLAISE)		147
Influence of temperature on the secondary ion emission of a monocrystalline aluminium target (R. LAURENT and G. SLODZIAN) .		153
Influence of channelling on secondary ion emission yields (M. BERNHEIM)	•	157
Secondary ion yield from tungsten and tungsten oxide as a function of primary ion mass and energy (A. BENNINGHOVEN, C. PLOG and N. TREITZ)		*
Mass spectrum and spatial distribution of secondary ions produced by ion bombard- ment of solids (V. YURASOVA, A. A. SYSOEV, H. A. SAMSONOV, V. M. BUKHANOV, L. N. NEVZOROVA and L. B. SHELJAKIN)		*
Energy distribution of secondary ions from 15 polycrystalline targets (Z. JURELA)		161
Determination of the negative ion yield of copper sputtered by cesium ions (M. K. ABDULLAYEVA, A. K. AYUKHANOV and U. B. SHAMSIYEV)		167

CONTENTS

K. SECONDARY ION EMISSION II (clusters)

Observation of clusters in a sputtering ion source (R. F. K. HERZOG, W. P. POSCHENRIEDER and F. G. SATKIEWICZ)	. 17	13
Angular dependence of clusters sputtered from a tungsten single crystal surface (G. STAUDENMAIER)	. 18	31
Secondary emission of molecular ions from light-element targets (M. LELEYTER and P. JOYES)	. 18	35
Neutral beam sputtering of positive ion clusters from alkali halides (J. RICHARDS and J. C. KELLY)	. 19	91
Deflection of sputtered ions by surface charges (J. RICHARDS, R. L. DALGLISH and J. C. KELLY)	. 19	95
The influence of channeling of the incident ion on secondary ion emission from single crystals Sputtered atom ejection and radiation damage annealing from elemental and compound semiconductors (E. ZWANGOBANI and R. J. MacDONALD)		*
L. PLASMA SOLID INTERACTION		
The wall problem in fusion reactors (R. BEHRISCH and H. VERNICKEL) .	. ,	*
M. SURFACE DAMAGE AND TOPOGRAPHY I		

Surface damage and to and D. J. MAZEY)	pography c	changes	proda	uced a	luring	sputte	ering (1	R. S. N	VELSO)N
A necessary condition during particle bomba	for the app rdment (N.	<i>earanc</i> HERM	e of d IANN	<i>amage</i> E) .	e-induc	ed sur	rface-t	opogra	aphy	
The topography of spi	ittered sem	icondu	ctors	(I. H.	WILSO	ON)				
Surface damage and to	pography c	of erbiu	т те	tal fili	ms im	olante	d with	heliui	m to	

high fluences (R. S. BLEWER) 227 . . . Blistering of polycrystalline and monocrystalline niobium (M. KAMINSKY and S. K. DAS) 233 . Blistering of molybdenum under helium ion bombardment (S. K. ERENTS and G. M. McCRACKEN) 239

199

207

217

.

.

.

N. SURFACE DAMAGE AND TOPOGRAPHY II

Thermal evolution and glass (A. O. G. CARTER)	on spec R. CAV	trome VALE	etry of RU, C	f low e 2. M. M	energy 10RL	<i>inert</i> EY, D	gas io . G. A	ns inje ARMOU	<i>cted in</i> JR and	nto Cu 1	, UO ₂		247
Secondary electr P. HÖGBERG)	on em	ission	and ra	diatio	on dam	nage in	ı Ge ((G. HO	LMÉN	l and			*
Radiation damag A ⁺ ion bombard	ze, anne ment (!	<i>ealing</i> B. NA	and th VINS	<i>herma</i> EK an	l desor d V. K	rption (RAS)	<i>in U(</i> EVEC	O₂ indi 2) .	uced b _.	y low	energy	v	*

xiv

CONTENTS	xv
Optical properties of ion bombarded silica glass (A. R. BAYLY)	. 255
Dose regularities under ion bombardment of solids (E. S. MASHKOVA and V. A. MOLCHANOV)	. 263
O. PHOTON EMISSION BY ION BOMBARDMENT	
Photon emission from low-energy ion and neutral bombardment of solids (N. H. TOLK, D. L. SIMMS, E. B. FOLEY and C. W. WHITE)	. 265
Photon-emission induced by impact of fast ions on metal surfaces (C. B. KERKDIJK and E. W. THOMAS)	. 275
Time decay of ion bombardment induced photon emission (J. G. MARTEL and N. T. OLSON)	. 279
P. SECONDARY ELECTRON EMISSION	
Angular and energetic distributions of secondary electrons emitted by solid targets under ionic bombardment (N. COLOMBIÉ, C. BENAZETH, J. MISCHLER and L. VIEL)	. 283
Auger electron emission by ion bombardment of light metals (J. F. HENNEQUIN and P. VIARIS DE LESEGNO)	. *
Estimation of electron potential emission yield dependence on metal and ion parameters (L. M. KISHINEVSKY)	. 289
Dependence of inelastic energy loss on the atomic numbers of the ions (B. E. BAKLITSKY, E. S. PARILIS and V. K. FERLEGER)	. 295
Energy spectrum of electrons emitted by alkali halide crystals under impact of ion and atom bombardment (U. A. ARIFOV, S. GAIPOV and R. R. RAKHIMOV)	. 301
Q. SECONDARY ION EMISSION III (application)	
A high resolution mass spectrometric study of the ion species produced by ion bombardment (C. A. EVANS, Jr., J. E. BAKER and B. N. COLBY)	. *
Quantitative method for the ion microprobe mass analyzer (IMMA) (C. A. ANDERSEN and J. R. HINTHORNE)	. *
Applications of secondary ion source mass spectrography (S.I.M.S.) to the analysis of surface layers (G. SLODZIAN, P. LANUSSE and R. HERMANDEZ)	. *
Application of characteristic secondary ion mass spectra to a depth analysis of copper oxide on copper (H. W. WERNER, H. A. M. DE GREFTE and J. VAN DEN BERG)	. 305
Secondary ion yields measured under different vacuum conditions (H. BESKE)	. *
List of Participants	. 311
-	