$\underline{C\ O\ N\ T\ E\ N\ T\ S}$

SESSION 1. FUSION	POWER	Page
Invited Paper	Conceptual design of a fusion power plant to meet the total energy requirements of an urban complex. A.P. Fraas.	1
Invited Paper	The economic factors affecting research into fusion power. P.J. Searby and L.G. Brookes.	20
Paper 1.1	On nuclear fusion objectives. J.L. Tuck.	31
Paper 1.2	Fission-fusion symbiosis: general considerations and a specific example. L.M. Lidsky.	41
Paper 1.3	Fusion reactors and environmental safety. F. Morley and J.W. Kennedy.	54
SESSION 2. REACTO	R CONTAINMENT PROBLEMS: Open-ended magnetic systems	
Invited Paper	Plasma confinement by magnetic fields. R.S. Pease.	66
Paper 2.1	Mirror systems: fuel cycles, loss reduction and energy recovery. R.F. Post.	88
Paper 2.2	Mirror reactors: some general considerations. D.R. Sweetman.	112
Paper 2.3	The geometry of a minimum-B reactor. J.G. Cordey and C.J.H. Watson.	122
Paper 2.4	Alpha particle heating and the energy balance in a mirror reactor. L.G. Kuo-Petravic, M. Petravic and C.J.H. Watson.	144
Paper 2.5	ASTRON plasma parameters confined in the closed magnetic well of a proton E-layer. N.C. Christofilos.	173
Paper 2.6	Fusion reactors and plasma flow. A.A. Newton.	182
SESSION 3. REACTO	R CONTAINMENT PROBLEMS: Closed-line magnetic systems	
Invited Paper	Tokamak as a possible fusion reactor - comparison with other CTR devices. I.N. Golovin, Yu.N. Dnestrovsky and D.P. Kotomarov.	194
Paper 3.1	Thermonuclear future of the Tokamak magnetic confinement device. P. Hubert.	222
Paper 3.2	Permissible parameters for economic Stellarator and Tokamak reactors. A. Gibson.	233
Paper 3.3	Feasibility studies of pulsed high-beta fusion reactors. G.I. Bell, W.H. Borkenhagen and F.L. Ribe.	242
Paper 3.4	A pulsed fusion reactor based on a toroidal pinch. H.A.B. Bodin, T.E. James and A.A. Newton.	255
Paper 3.5	Feasibility studies of pulsed toroidal reactors. E.P. Butt.	268

		Page
Paper 3.6	Some design aspects of the field system and associated power supply of pulsed toroidal fusion reactors. T.E. James, A.A. Newton and H.A.B. Bodin.	282
Paper 3.7	Fuel burn-up and direct conversion of energy in a D-T plasma. T.A. Oliphant.	306
Paper 3.8	Time-dependent behaviour of fusion reactors. R.G. Mills.	322
SESSION 4. FUSION	REACTOR TECHNOLOGY: Plasma-containment vessel interactions	
Invited Paper	Engineering parameters of a fusion reactor. R. Carruthers.	337
Paper 4.1	Sputtering coefficients of niobium. A.J. Summers, N.J. Freeman and N.R. Daly.	347
Paper 4.2	Ion burial in the divertor of a fusion reactor. G.M. McCracken and S.K. Erents.	353
Paper 4.3	The energy dependence of neutron radiation damage in solids. $\ensuremath{\text{M.T.}}$ Robinson.	364
Paper 4.4	Some observations on 14 MeV neutron radiation effects on reactor materials. B. Myers.	379
Paper 4.5	An assessment of some radiation damage effects in the containment vessel of a thermonuclear reactor. D.G. Martin.	399
Paper 4.6	The fusion torch - unique applications of ultra-high temperature plasmas. B.J. Eastlund and W.C. Gough.	410
Paper 4.7	Sputtering of niobium by D^+ and He^+ ions. O.C. Yonts.	424
SESSION 5. FUSION	REACTOR TECHNOLOGY: (a) Neutronics and breeding (b) Fuel inject	<u>ion</u>
Invited Paper	Some topics on pulsed systems and mirrors. D.J. Rose, G.L. Flint and F.B. Marcus.	429
Paper 5.1	Overall tritium balances in fusion reactors. E.F. Johnson.	441
Paper 5.2	Preliminary design considerations for an Astron power reactor system. R.W. Werner, B. Myers, P.B. Mohr, J.D. Lee and N.C. Christofilos.	449
Paper 5.3	Tritium breeding and energy generation in liquid lithium blankets. J.D. Lee.	471
Paper 5.4	Neutronic behaviour of two fusion reactor blanket designs. D. Steiner.	483
Paper 5.5	Neutronics calculations for blanket assemblies of a fusion reactor. S. Blow, V.S. Crocker and B.O. Wade.	492
Paper 5.6	Hall accelerators in fusion research. H.C. Cole.	503
Paper 5.7	Fusion reactor ignition using RF power. D.J.H. Wort.	517

SESSION 6. FU	ISION REACTOR TECHNOLOGY: Heat transfer and power conversion	Page
Paper 6.1	Direct helium cooling cycle for a fusion reactor. G.R. Hopkins and G. Melese-d'Hospital.	522
Paper 6.2	Module approach to blanket design - a vacuum wall free blanket using heat pipes. R.W. Werner.	536
Paper 6.3	Fusion reactor power conversion studies. P.B. Mohr.	558
	Conference Summary. A.S. Bishop.	571
LIST OF PARTIC	IPANTS. INDEXES	
List of participants		579
Author Index		
Subject Index		594