CONTENTS

1.	INTRODUCTORY REMARKS– FUSION POWER FEASIBILITY	
	 1.1 Fuel Cycles and Breeding Reactions 2 1.2 Energy Balance and Reactor Conditions 3 1.3 Approaches to Fusion 6 1.4 Magnetic Confinement 6 1.5 Magnetohydrodynamic (MHD) Instabilities 11 1.6 Microinstabilities 15 1.7 Whence Fusion Power Feasibility 17 	
2.	BASIC PROCESSES AND BALANCES IN FUSION REACTORS	21
	 2.1 Energy Balance and Ignition Temperature 21 2.2 Bremsstrahlung Power 23 2.3 Cyclotron (Synchrotron) Radiation 26 2.4 Power from Fusion Reactors 28 2.5 Particle Balance and Burn-up Fraction 32 2.6 A More Detailed Plasma Energy Balance 35 	
3.	3. SOME ASPECTS OF THE NEUTRONICS IN FUSION REACTORS	
	 3.1 Neutron Diffusion 44 3.2 Tritium Breeding and Doubling Time 52 3.3 Neutron Radiation Damage in Reactor Materials 60 	
4.	PHYSICS OF NEUTRAL BEAM HEATING	81
	 4.1 Introduction 81 4.2 Plasma Heating by Energetic Heavy Charged Particles 83 	
5.	PLASMA HEATING BY RELATIVISTIC	131

ix

6.	RADIOFREQUENCY (RF) HEATING OF FUSION PLASMAS
	6.1 Transit Time Magnetic Pumping 1616.2 Guiding Center Theory of Transit Time Heating 162
7.	ADIABATIC COMPRESSION AND IGNITION OF FUSION REACTORS
	 7.1 Tokamak Geometry 185 7.2 Derivation of the Vertical Field 186 7.3 Application 199
8.	DYNAMICS AND CONTROL OF FUSION REACTORS
	 8.1 Thermal Instability and Feedback Stabilization 203 8.2 The Dynamic Behavior of a Low Beta Tokamak Reactor 214
9.	AN ENVIRONMENTAL ASPECT OF A FUSION POWER PLANT-THERMAL EFFICIENCY AND WASTE HEAT
	 9.1 Analysis and Results 232 9.2 The Principle of Direct Conversion in Mirror Systems 249
10.	FISSION-FUSION HYBRID SYSTEMS
11.	INERTIAL-CONFINEMENT FUSION SYSTEMS 263
	 11.1 Technical Considerations of a Microexplosion 266 11.2 Effects of Electron Thermal Conduction and Alpha Heating 272
	11.3 The Concept of Laser-Fusion 27711.4 Economic Considerations 29011.5 Laser Absorption 292
12.	RADIOLOGICAL ASPECTS OF FUSION REACTORS

12.1 Relevant Nuclear Reactions 29912.2 Radioisotope Inventory 30512.3 Nuclear Afterheat 307

х

13.	DESIGN CONSIDERATIONS OF			
	FUSION REAG	$CTORS \dots 3$	13	
	13.1 Wall Loa	ading 314		
	13.2 Magnetic	c Field and Plasma Density 317		
	13.3 The Con	tainment Parameter $n\tau$ 319		
	13.4 Mirror R	Reactor Feasibility 326		
	13.5 Main De	sign Parameters of a Mirror Reactor 330		
	13.6 Design C	Intracteristics of a Fulsed Fusion Reactor 555		
14.	RADIATION I	DAMAGE TO MATERIALS		
	IN FUSION RI	EACTORS. \ldots \ldots \ldots \ldots 3	51	
	14.1 Sputteri	ng Theory 352		
	14.2 Sputteri	ng Damage in Fusion First Wall 375		
	14.3 Erosion	Due to Evaporation 389		
	14.4 Wall Dar	mage by Blistering 400		
15.	HEAT REMOV	AL AND THERMAL CONSIDERA-		
	TIONS IN FUS	SION REACTOR BLANKETS 4	05	
	15.1 The Equ	ations of Magnetohydrodynamic (MHD)		
	Flow	in Ducts 406		
	15.2 Some Ph	nysical Aspects of MHD Flow in Ducts 416		
	15.3 Calculat	ion of the Pressure Drop and Pumping		
	Powe	r 424		
	15.4 Stress C	onsiderations in Coolant Ducts 430		
16.	A COMPARAT	TIVE STUDY OF THE APPROACHES		
	TO FUSION P	$OWER \ldots \ldots \ldots \ldots \ldots \ldots \ldots 4$	41	
	16.1 General	Formulation of the Power Balance		
	Equa	tion 442		
	16.2 Calculat	ion of Q for Pulsed and Steady-State		
	Syste	ems 449		
	16.3 Applicat	tion to the Various Fusion Concepts 452		
	16.4 Intercor	nparison and Conclusions 478		

xi