CONTENTS

1.0	OVE	RVIEW		15
	1.1	PHYS	ICS GOALS	15
	1.2	DESIG	JN PHILOSOPHY	15
	1.3	SUMN	ARY OF PHYSICS DESIGN GUIDELINES	17
	1.4	SUMN	ARY OF PHYSICS ISSUES	17
		1.4.1	Plasma Performance	19
		1.4.2	Design Related Physics Issues	22
			1.4.2.1 Power and particle control	23
			1.4.2.2 Disruptions	25
			1.4.2.3 Auxiliary systems	26
	1.5	PHYS	ICS R&D FOR ITER	28
	1.6	PHYS	ICS STATUS	29
	REF	ERENCI	ES (§1.0)	30
2.0	PLA	SMA PE	RFORMANCE	31
	2.1	CONF	INEMENT	31
		2.1.1	Introduction	31
		2.1.2	Confinement Requirements	32
		2.1.3	Energy Confinement Database	32
			2.1.3.1 <i>L-Mode</i>	32
			2.1.3.2 <i>H-Mode</i>	38
			2.1.3.3 Additional confinement regimes	43
		2.1.4	Particle Confinement	45
			2.1.4.1 Parameter dependence of $\tau_{\rm p}$	45
			in OH and L-mode discharges	45
			2.1.4.2 Local transport coefficients in onmic and	16
			2.1.4.2 Electron particle transport in	40
			2.1.4.5 Electron particle transport in	16
			2.2.4.4 Low transmost	40
		215	Accession Confinement Database	17
		2.1.3	Theory and Modeling	48
		2.1.0	2.1.6.1 Anomalous transport theory and modeling	48
			2.1.6.1 Anomatous transport theory and modeling	50
		Defer	2.1.0.2 Equivalence considerations	51
	2 2	MLID	пось (32.1) Стари ITV	53
	2.2	221	Introduction	53
		2.2.1		55
		4.4.4	2 2 2 1 Shape effects on heta limits	55
			2.2.2.1 Simple effects on beta limits	58
			2.2.2.2 A rojue ejjects on oeta tunitis	61
			a.a.a.o operation region and num file	

		2.2.2.4 The $m = 1$ phenomena	65			
		2.2.2.5 Non-ideal effects	68			
	2.2.3	Predictions and Recommendations for ITER	68			
		2.2.3.1 General conclusions	68			
		2.2.3.2 Shape effects	69			
		2.2.3.3 Profile effects	69			
		2.2.3.4 Summary and guidelines	70			
	2.2.4	Major Issues Emphasized in the Future R&D Activity	70			
		2.2.4.1 Issues	70			
		2.2.4.2 Future R&D tasks	71			
	Referen	nces (§2.2)	72			
23	DENSITY LIMITS					
2.5	231	Introduction	74			
	2.3.1	I mode Density I imits	74			
	4.3.4	2 3 2 1 Conoral nicture	74			
		2.3.2.1 General picture	75			
		2.3.2.2 Experimental studies	75			
	222	H mode Density Limits	10 07			
	2.3.3	Drojections to ITED	02			
	2.3.4	Summary and Conclusions	83			
	2.3.3 Deferre		84			
	Refere	nces (92.5)	83			
2.4	2.4 ALPHA PARTICLE PHYSICS					
	Introduction	86				
	2.4.2	Ripple Losses	87			
		2.4.2.1 Qualitative analysis	87			
		2.4.2.2 Description of numerical codes	90			
		2.4.2.3 Numerical results for an ideal first wall	90			
		2.4.2.4 Heat load at limiters and port edges	94			
	2.4.3	Collective Effects	94			
		2.4.3.1 Toroidal Alfvén eigenmodes (TAE's)	95			
		2.4.3.2 Ballooning modes	95			
		2.4.3.3 <i>Experimental results in relation to</i>				
		Alfvén and ballooning modes	97			
		2.4.3.4 Alpha particle driven fishbone oscillations	99			
		2.4.3.5 Concluding remarks	99			
	2.4.4	Control of Fusion Power Production Rate (Burn Control).	100			
		2.4.4.1 Introduction	100			
		2.4.4.2 Operating point (equilibrium) control	100			
		2.4.4.3 Fusion power stability control	102			
		2.4.4.4 Rapid termination of fusion power production	105			
	References (§2.4)					
pow	ED ANT	DARTICI E CONTROI	100			
31	INTRO	DUCTION	100			
3.1	EXDER	RIMENTAL DATABASE	110			
~ ~ ~ ~	CAPERIIVIENTAL DATABASE					

3.2.1 General Characteristics of SOL and Divertor Plasmas 110

3.0

		onto the divertor	115			
		3.2.7.3 Heat loads characteristics of DN divertor	116			
		3.2.7.4 Characteristic of ELMs	118			
	3.2.8	Impurity Transport, Accumulation, and the				
		Associated Radiation Loss	119			
		3.2.8.1 Level of Z _{eff} : graphite divertor/				
		first wall components	119			
		3.2.8.2 Level of Z _{eff} : beryllium, boronized, and metal				
		divertor/first wall components	119			
		3.2.8.3 Impurity transport and the associated radiation .	120			
		3.2.8.4 Edge radiation cooling of the edge	120			
	3.2.9	Helium Transport and Exhaust	121			
		3.2.9.1 Helium transport in the core plasma	121			
		3.2.9.2 Helium exhaust requirements	122			
		3.2.9.3 Tritium throughput	122			
3.3	STATU	JS OF MODEL VALIDATION	122			
	3.3.1	Models of the Edge Plasma Region	122			
	3.3.2	Scrape-off-Layer Parameters	123			
3.4	MODE	L PREDICTIONS OF DIVERTOR HEAT LOADS	125			
	3.4.1	Results of Model Predictions for ITER Divertor Plates	126			
	3.4.2	Effect of In/Out and Up/Down Asymmetry on				
		Divertor Heat Load Specification	135			
	3.4.3	Physics Safety and Peaking Factor to be				
		Applied to the Power Load	137			
	3.4.4	Improvement of Divertor Heat Loads by				
		Ergodization and Sweeping	139			
	3.4.5	Peaking Factors for Plate Temperature				
		and Sheath Potential	140			
3.5	OPTIM	IIZATION OF DIVERTOR GEOMETRY	141			
	3.5.1	Divertor Depth	142			
	3.5.2	Plate Inclination	142			
	3.5.3	Plate Shape	143			
3.6	COMP	ARISON OF SINGLE- AND DOUBLE-NULL				
	DIVERTOR PERFORMANCE OF ITER 1					
3.7	IMPUF	RITY TRANSPORT AND RADIATED POWER	146			
	3.7.1	Divertor and SOL Regions	146			

3.2.2 Upstream SOL Plasma Density and

3.2.4 Empirical Scaling for SOL Plasma

Temperature Characteristics 111

Characteristics in Divertor Discharge 112

3.2.7.1 Power load half-width 115

3.2.3 Effect of Additional Heating on SOL Plasma Density 111

3.2.7.2 Asymmetry of heat and particle fluxes

3.7.2 Core and Edge Regions 148

	3.8	DIVERTOR PLATE EROSION AND REDEPOSITION	149
		3.8.1 Low-Z Materials	152
		3.8.2 High-Z Materials	155
	3.9	HELIUM EXHAUST	156
		3.9.1 Helium Transport in the Bulk Plasma	156
		3.9.2 Helium Transport in the Edge Plasma	157
		3.9.3 Helium Transport in the Pump Duct	158
	3.10	FIRST-WALL OPERATING CONDITIONS	159
		3.10.1 Heat Loads on the First Wall	159
		3.10.2 Erosion	160
		3.10.3 Plasma Contamination	160
		3.10.4 Effects on the Divertor	160
	3.11	STARTUP SCENARIO AND STARTUP	
		LIMITER CONSIDERATIONS	161
	3.12	CONDITIONING	163
		3.12.1 Baking	163
		3.12.2 Conditioning Techniques	163
	3.13	PASSIVE SHUT-DOWN	164
	3.14	PHYSICS R&D REQUIREMENTS	166
	REFI	ERENCES (§3.0)	167
4.0	DISR	RUPTIONS	171
	4.1	CHARACTERISTICS OF TYPICAL DISRUPTIONS	171
		4.1.1 Classification of Disruptions	171
		4.1.2 Evolution of Disruptions	171
		4.1.3 Disruption Frequency	172
		4.1.4 Characterization of Disruptions for	
		Representative ITER Scenario	173
	4.2	CHARACTERISTICS OF VERTICAL	
		DISPLACEMENT EVENTS	173
	4.3	SPECIFIC ASPECTS OF DISRUPTIONS	178
		4.3.1 Energy Deposition During Thermal Quench	178
		4.3.2 Energy Deposition During Current Quench	178
		4.3.3 Runaway Electrons	179
	4.4	CONTROL AND AVOIDANCE OF DISRUPTIONS	181
		4.4.1 Active Control Method	181
		4.4.2 Stable Operational Range	182
	4.5	REQUIREMENTS IN R&D	183
	REF	ERENCES (§4.0)	184
50	CUID	PENT DRIVE AND HEATING	197
5.0	5 1		10/
	5.1		10/
	5.4	5.2.1 Experimental Deculta	188
		5.2.2 EO Startur Theorem Status and Day Statistics for UTED	189
	5 2	5.2.2 EC Startup Theory: Status and Predictions for ITER	189
	5.5		190

	5.3.1	Physics Issues Relevant for High-β Operation			
		5.3.1.1 Penetration limit due to wave damping	191		
		5.3.1.2 Penetration limit due to propagation			
		effects in toroidal geometry	192		
		5.3.1.3 Spectral broadening issue	193		
		5.3.1.4 Consequences of restricted penetration:			
		restricted total power and current	193		
		5.3.1.5 Current diffusion	194		
	5.3.2	Selection of Frequency, Interaction with α -Particles	194		
		5.3.2.1 Lowest frequency for avoiding interaction			
		with α -particles	195		
		5.3.2.2 Coupling density	195		
		5.3.2.3 Selection of the frequency			
		for the LHW system: Summary	196		
	5.3.3	Current Drive Efficiency	196		
	5.3.4	Current Ramp-up Assist with LHW	197		
5.4	NEUT	RAL BEAM PHYSICS	198		
	5.4.1	Introduction	198		
	5.4.2	Status of Database	198		
		5.4.2.1 Neutral beam current drive	198		
		5.4.2.2 Alfvén wave instability and			
		beam slowing down	199		
		5.4.2.3 Neutral beam stopping cross-section	200		
		5.4.2.4 Plasma rotation	201		
	5.4.3	Design Issues	202		
		5.4.3.1 Current drive efficiency	202		
		5.4.3.2 Beam energy, beam aiming and			
		beam penetration	202		
		5.4.3.3 Profile controllability of beam driven current	205		
		5.4.3.4 Beam shinethrough	205		
		5.4.3.5 Consistency with lower hybrid waves	205		
5.5	ION C	YCLOTRON PHYSICS	206		
	5.5.1	Theory and Modeling of Fast Wave Current Drive	206		
		5.5.1.1 Low frequency fast wave			
		current drive scenarios	206		
		5.5.1.2 Intermediate frequency fast wave			
		current drive scenarios	207		
		5.5.1.3 High frequency fast wave			
		current drive scenarios	207		
	5.5.2	Experimental Database	208		
	5.5.3	Ion Cyclotron Heating	208		
		5.5.3.1 Deuterium minority heating	208		
		5.5.3.2 He ³ and other minority heating schemes	209		
		5.5.3.3 Heating and current drive at high frequency	209		
5.6	BOOT	STRAP CURRENT	210		
	5.6.1	Status of Database	210		
	5.6.2	Bootstrap Current in ITER	211		

	5.7	REFERENCE OPERATING SCENARIO		
		5.7.1 Current Profile Control	214	
		5.7.1.1 Bulk current profile control	214	
		5.7.1.2 Detailed current profile control	216	
		5.7.2 Start-up Assist	216	
		5.7.3 Noninductive Current Ramp-up and/or		
		Current Ramp-up Assist	216	
		5.7.4 Plasma Heating and Burn Control	217	
	5.8	ALTERNATE OPERATING SCENARIO	217	
		5.8.1 Fast Wave Current Drive	218	
		5.8.1.1 Scenarios with high bootstrap current	218	
		5.8.1.2 Long-pulse ignition and hybrid scenarios	219	
		5.8.2 Fast Wave Heating and Burn Control	220	
	5.9	CONTROL OF MAJOR DISRUPTION		
		BY EC CURRENT DRIVE	220	
	REF	ERENCES (§5.0)	221	
6.0	AXIS	SYMMETRIC MAGNETICS	229	
	6.1	INTRODUCTION	229	
		6.1.1 Axisymmetric Magnetics Design Issues	229	
		6.1.2 Topics and Organization	230	
		6.1.3 Relation to Other Design Elements	230	
	6.2	AXISYMMETRIC MAGNETICS REQUIREMENTS	231	
		6.2.1 Basic Requirements	231	
		6.2.2 Equilibrium Analysis Method and Validation	231	
		6.2.3 A1 Operational Scenario and Plasma Profile Parameters .	232	
		6.2.4 Plasma Volt-second Balance and Resistive		
		Volt-second Requirements	234	
	6.3	PLASMA EQUILIBRIUM	237	
		6.3.1 Reference Plasma Configuration and PF Coil Locations .	237	
		6.3.2 PF System Optimization and Performance Evaluation	239	
		6.3.3 Alternate Plasma Configurations	241	
		6.3.4 Plasma Operations Cycle	242	
		6.3.5 Equilibrium Control	244	
	6.4	AXISYMMETRIC STABILITY AND DYNAMIC EVOLUTION	246	
		6.4.1 Axisymmetric Stability	246	
		6.4.2 Plasma Dynamics	249	
	6.5	SUMMARY AND FUTURE NEEDS	251	
	REF	ERENCES (§6.0)	252	
70		CNIOSTICS	755	
7.0	7 1	ΙΝΤΡΩΠΙΟΤΙΩΝ	255	
	7.1		255	
	72	DIAGNOSTICS ISSUES	255	
	7.5	DIAGNOSTICS R&D DI AN	201	
	7.4	7 4 1 Framples of Diagnostics R&D Needs	202	
	PEE	TRENCES (87 (1)	202	
	است		204	

8.0	FUE	LLING		265
••••	8.1	FUELI	LING REQUIREMENTS	265
		8.1.1	Required Particle Fluxes	265
		8.1.2	Control of Density and Density Profile	265
		8.1.3	Fueling Requirements for Burn Control	266
		8.1.4	Restriction on Density profile Choice	266
			8.1.4.1 Edge density	266
			8.1.4.2 Beta limit	266
			8.1.4.3 Damage to the first wall	267
		8.1.5	DT Mix Requirements and Tritium Inventory	267
		8.1.6	Wall Conditioning	267
	8.2	RELA	TION OF PARTICLE TRANSPORT TO FUELLING	267
		8.2.1	Particle Confinement Time	267
		8.2.2	Diffusivity and Inward Pinch	268
	8.3	FUELI	LING METHODS	269
		8.3.1	Gas Puffing	269
		8.3.2	Pellet Injection and Pellet Ablation Physics	269
		8.3.3	Alternative Methods	270
			8.3.3.1 NB injection	270
			8.3.3.2 Ripple fuelling	270
			8.3.3.3 Compact toroids	271
	8.4	MODE	S OF OPERATION	271
		8.4.1	Fuelling During Burn	271
			8.4.1.1 Fuelling only by gas puffing	271
			8.4.1.2 Fuelling only by pellet injection	271
			8.4.1.3 Combination of pellet injection and gas puffing	272
		8.4.2	Compatibility of Pellet Fuelling with	
			Lower Hybrid Current Drive	272
		8.4.3	Density Ramp-up to Ignition	272
	8.5	CONT	ROL OF DENSITY AND DT MIX	273
	8.6	PHYS	ICS R&D NEEDS	273
		8.6.1	Particle Transport	273
		8.6.2	Pellet Ablation Physics	273
		8.6.3	Innovative Fuelling Methods	274
	REF	ERENCI	ES (§8.0)	274
9.0	ток	ΑΜΑΚ	OPERATIONS	277
	9.1	OPER/	ATIONAL PLANS	277
		9.1.1	Zero-Activation Phase	277
		9.1.2	Low-Activation Phase	277
		9.1.3	High-Activation Phase	278
	9.2	OPER /	ATIONAL MODES	279
		9.2.1	Major Characteristics of Operating Points:	~ / /
			Inductive Operation	282
		9.2.2	Major Characteristics of Operating Points:	202
			Long-Pulse Operation	283
		9.2.3	Divertor Sweeping	285

	9.3	OPERATIONAL SCENARIOS				
		9.3.1	Reference Ignition Scenario	285		
		9.3.2	Reference Long-Pulse Scenario	288		
		9.3.3	Nominal Steady-State	289		
		9.3.4	Variants Based on Noninductive Ramp-up Assist	292		
		9.3.5	Outboard Start-up	292		
	REFE	ERENCE	ES (§9.0)	293		
10.0	PHYS	SICS R&	zD	295		
	10.1	INTRO	DUCTION	295		
	10.2	PROG	RAMME 1989-1990	295		
	10.3	PROG	RAMME 1991-1995	296		
		10.3.1	Approach	296		
		10.3.2	Programme 1991-1992	296		
		10.3.3	Diagnostics	297		
	REFE	ERENCE	ES (§10.0)	297		
11.0	ACK	NOWLE	DGMENTS	299		