Contents

LIST OF CONTRIBUTORS	
CONTENTS OF PART A	

ix xi

8 Linear Magnetic Fusion Systems

W. E. Quinn and R. E. Siemon

Ι.	Introduction	2
II.	Heating Methods	5
III.	Equilibrium and Stability	12
IV.	Transport	15
V.	Impurities	18
VI.	Scaling Laws for LMF Devices	19
VII.	End-Stoppering Methods	26
VIII.	Reactor Considerations	30
	References	33

9 The High-Beta Stellarator

F. L. Ribe

I.	Introduction	39
II.	Basic Considerations in Toroidal Theta Pinches	40
III.	The High-Beta Stellarator Equilibrium	42
IV.	Stability of the $l = 1$ Plasma Column	46
V.	Feedback Stabilization	49
VI.	Extrapolation of Feedback Stabilization to Toroidal Reactor Systems	54
VII.	Recent Related Theoretical Work on Low-Beta Stellarators	55
VIII.	Conclusions	55
	References	56

v

10 Fast-Lineár-Compression Fusion Systems

F. L. Ribe and A. R. Sherwood

I.	Introduction	59
II.	Development of the Concept	60
III.	Dynamics of Fast-Linear Compression	61
IV.	Plasma Losses	67
V.	Fast-Linear Experiments	70
VI.	Fast-Linear Fusion Reactors	73
	References	77

11 The ELMO Bumpy Torus

R. A. Dandl and G. E. Guest

I.	Introduction	,	79
II.	Single-Particle Confinement in the Bumpy Torus		80
III.	Interchange Stability Criterion for the Bumpy Torus		82
IV.	Microwave-Heated, Hot-Electron Plasmas		84
V.	The EBT-I Experiments		88
VI.	Transport Processes in EBT		96
	References		100

12 **Neutral-Beam Injection**

W. B. Kunkel

Ι.	Introduction	103
II.	Neutral Injection Requirements	105
III.	Neutral-Beam Injection System	117
IV.	Beam-Forming Elements	120
V.	High-Performance Ion Sources	132
VI.	Efficiency Enhancement	142
	Bibliography	149
	References	149

Radio-Frequency Heating of Magnetically Confined Plasma 13

Miklos Porkolab

Ι.	Introduction	151
П.	Regimes of Interest in RF Heating	155
III.	Electron Cyclotron Resonance Heating	156
IV.	Lower-Hybrid Range of Frequencies	164

IV. Lower-Hybrid Range of Frequencies

vi

CONTENTS

V.	Ion Cyclotron Range of Frequencies (ICRF)	174
VI.	Alfvén-Wave Heating	181
VII.	Transit-Time Magnetic Pumping (TTMP)	184
VIII.	Very Low-Frequency Heating	186
IX.	Reactor Applications and Technology	186
	References	188

14 Magnetic Fusion Reactors

Robert W. Conn

I.	Introduction	194
II.	Fusion Fuels and Basic Plasma Performance Requirements	195
III.	Basic Elements of Magnetic Fusion Reactions	206
IV.	The Reactor Power Balance	210
V.	Burn Cycles and Burn Modes of Reactor Plasmas	216
VI.	Superconductivity and Magnet Design	245
VII.	Blanket Design for Fusion Reactors	261
VIII.	Radiation Effects on Materials in Fusion Reactors	291
IX.	Tritium in Fusion Reactors	312
Χ.	Reactor Design—Putting the Pieces Together	343
	References	398

15 The Fusion–Fission Fuel Factory

R. W. Moir

Ι.	Introduction	411
II.	Basic Processes	415
III.	Hybrid Designs	427
IV.	Uranium Demand and Resource Projections	444
V.	The Fusion-Fission Fuel Factory Compared to Alternatives	446
VI.	Summary	448
	References	449

16 Advanced Fusion Reactors

John M. Dawson

I.	Introduction	453
II.	Some Possible Advanced-Fuel Candidates	456
III.	Some Basic Considerations for Advanced-Fuel Reactors	. 462
IV.	Efficient Recovery of Energy from Controlled Thermonuclear Reactors	
	and Its Application to Advanced Devices	480
V.	Some Examples of Advanced-Fuel Reactions	488

viii		CONTENTS
VI.	Multipoles as a Possible Magnetic Confinement System for Advanced Fuels References	493 500
Index		503