CONTENTS

In the paperback edition

Volume I:	<u>Principle</u> s i	includes d	chapters	1-10, pa	ages 1-	-272	
Volume II:	Experiments	includes	chapters	11-17,	pages	273-549	
Volume III	: <u>Technology</u>	includes	chapters	18-30,	pages	550-855	
Preface		xvii					
Acknowledgements xix							

PRINCIPLES

1.

En	ergy Sources		2. Nuclear Reactions and Coulomb
A. B.	Forms of Energy Energy Demand energy uses relation to standard of living	1	COllisions 2A. Distribution Functions and Averages
С.	predictions of demand Energy Sources power flows	4	monoenergetic beam on stationary target moving target
D. E.	limits of usable energy Solar Energy Fusion Reactions energy release	6 8	two Maxwellian distributions interactions among like particles
F.	fusion fuels Fusion Reactors research progress power plants	10	beam and Maxwellian two colliding beams collision frequency and
G.	SummaryBibliography	14	mean free path 2C. Nuclear Fusion Reaction Rates 26 2D. Power Density and Pressure - 30

	2E.	Coulomb Collisions basic equations	35	5.	Р	lasma Fundamentals	
		evaluation of δρ and δW Coulomb scattering cross			5A.	Introduction 1 background	01
		section Coulomb logarithm results			5B.	fourth state of matter Electromagnetic Fields and Forces	04
		applications Problems	46			charge and current densities	
_		Bibliography	48			Maxwell Equations vector and scalar	
3.		Atomic Collisions and Radiation				potentials forces on individual	
		Types of Collisions	49			particles fluid forces	
		Scattering and Momentum Transfer			5C. 5D.	Kinetic Theory 1 Fluid Equations 1	09 10
		Molecular Collisions Atomic Collision Phenomena	52			two-fluid theory ambipolar motion	
		Equilibrium Degree of Ionization				transport coefficients Boltzmann relation	
		equilibrium conditions Saha equation			5E.	MHD equations Plasma Waves1	21
	3F.	coronal case Radiation Losses	62			cold plasma model dispersion relation	
		radiation processes approach to coronal				phase and group velocities	
		equilibrium coronal equilibrium case				wave growth and damping cutoffs and resonances	
		cyclotron radiation Problems	70			propagation along É propag _a tion perpendicular	
		Bibliography	72		5F.	to \vec{B} Debye Shielding and Plasma Sheaths 1	
┧.		usion Reactor Power Balance				screening of potential	30
		Conservation Equations Equilibrium and Ignition				from point charge potential variation near	
		equal temperatures and no fuel depletion			5G.	wall or probe Quasineutrality1	33
		catalyzed DD reactor ignition			5H.	plasma behavior Computer Methods 1 finite difference	34
	4C.	impurity effects Energy Cycle simple cycle	79			equations quasiparticle methods	
	Δn	cycles with direct conversion Required Values of $n_{\tau F}$	n 85			Problems 1 Bibliography 1	37 38
	т.	steady state reactors pulsed reactors		6.	C	as Discharges and Breakdow	
	4E.	burnup fraction Mirror Reactors		٠.		Background1	
	4F.	Beam-driven Toroidal Reactors - Non-uniform and Time-varying			6B.	Townsend Discharges 1 Simplified Breakdown	40
		Plasmasspatial variations	93			Condition 1 Other Phenomena Influencing	43
	4H.	Comparison of Reactor Types summary				Breakdown 1 Glow and Arc Discharges 1	
		ProblemsBibliography	98 100				

6F. Space Charge Limitation of Current	8E. Microinstabilities 197 types of interactions non-Maxwellian distri- butions anisotropic distributions
7. Charged Particle Trajectories	gradients and drift waves 8F. Transport 204
7A. Guiding Center Approximation - 151 7B. Diamagnetism 154 7C. Drift Velocities 154 7D. Adiabatic Invariants and	transport equations additional considerations transport theories random walk model
Magnetic Mirrors 158 magnetic moment magnetic mirrors other adiabatic invariants	8G. Confinement Times 210 definitions experimental measurements theoretical estimates
7E. Particle Orbits in Tokamaks 161 $v_{II} >> v_{\perp}$ case	Problems 213 Bibliography 215
$v_{II} \sim v_{\perp}$ case	9. Plasma Heating
summary Problems 166 Bibliography 167	9A. Methods 217 9B. Ohmic Heating 217 increased resistivity
8. Plasma Confinement	electron runaway 9C. Compression 219
8A. Introduction 168 means of plasma containment	shock heating adiabatic compression
magnetic field shapes thermodynamic equilibrium	9D. Charged Particle Injection - 222 charged particle beams plasma guns
and plasma equilibrium energy loss mechanisms	9E. Neutral Beam Injection 223 penetration
8B. Magnetic Confinement 171 equilibrium conditions magnetic pressure plasma beta	neutral beam ion sources electrodes neutralizer and deflec- tion magnet
divergences 8C. Axisymmetric Toroidal	beam duct and pumping 9F. Wave Heating 229
Equilibrium 175 derivation of Grad-Shafranov Equation properties of the Grad-	stages of wave heating plasma resonances cavity resonances
Shafranov Equation 8D. MHD Instabilities 179 the ball analogy	wave heating problems Problems 233 Bibliography 234
linearized MHD equations eigenvalues	10. Plasma Diagnostics
example of normal mode analysis energy principle interchange instability types of MHD instabilities ballooning modes tearing modes summary	10A. Introduction 237 10B. Electrical Probes 238 10C. Magnetic Flux Measurements - 240 10D. Passive Particle Diagnostics 241 electrons and ions charge-exchange neutral atoms neutrons 10E. Active Particle Diagnostics 245
	ion beam probes neutral beam probes

X11	Conc	ents	Content	.S
10F	 Passive Wave Diagnostics 247 photography spectroscopic analysis of 	concept		4. Other Toroidal Devices
	hydrogen density impurity radiation spectral line broadening spectral line intensities soft x-ray measurements	production reactor concepts 11G. Multiple Mirrors 300 configuration steady state mode pulsed mode	13A. MHD Stability 350 introduction ideal kink modes ideal internal modes ideal axisymmetric (n = 0) modes	14A. Stellarators and Torsatro stellarator magnetic fields torsatron fields modular coils
10G	hard x-ray measurements far-infrared and microwave measurements Active Wave Diagnostics 253 microwave reflection	11H. Rotating Plasmas 302 11J. Cusps 303 confinement untrapped particles	resistive interchange modes resistive tearing modes disruptive instability ballooning modes and beta	equilibrium and stabilitansport experiments reactors
	resonant cavity measure- measurements plasma refractive index microwave interferometers	sheath thickness TORMAC Bibliography 307 12. Pinches and Compact Toroids	limits operating regimes Mirnov oscillations sawtooth oscillations effects of plasma shape	14B. Internal Rings magnetic field configurations experiments 14C. Electron and Ion Rings
	Mach-Zehnder laser inter- interferometers Ashby-Jephcott interferometer quadrature interferometers	12A. Types of Pinches 311 Z pinches plasma focus	13B. Transport 362 neoclassical transport anomalous transport transport codes	field reversal injection into toruses 14D. Elmo Bumpy Torus (EBT) introduction
	far-infrared (FIR) interferometers holographic interferometry Faraday rotation Thomson scattering	imploding liner inverse pinch and hard- core pinch toroidal Z-pinch linear theta pinch	experimental measurements burn control 13C. Heating 372 ohmic heating neutral beam injection	particle orbits equilibrium and stabil ring stability heating transport
10H 10J	. TFTR Diagnostics 264 . Summary 267 Problems 269 Bibliography 270	pinch and bert pinch EXTRAP compact toroids	rf heating compression other heating methods 13D. Current Drive 377 magnetic induction	ring power balance experiments reactors 14E. Electric Field Bumpy Toru Bibliography
	EXPERIMENTS	12B. Field-Reversed Theta Pinch 323 formation equilibrium and stability parameter scaling	bootstrap current neutral-beam-driven current 15 electron-beam-driven current rf current drive	5. Inertial Confinement For (ICF)
	Mirrors and Cusps	experiments 12C. Spheromak 329	13E. Runaway Electrons 382 generation limitations of runaway	15A. Introduction ICF reactors compression problems
	. Coil Geometries 273 mirror coils cusp coils	stability production by pinches and guns	velocity experimental observations 13F. Scaling 386	15B. Energy Gain
	. Mirror Loss Boundaries 277 . Instabilities 278 drift cyclotron loss cone (DCLC) mode mirror mode and Alfven ion	STOW HIGHLETON LECTIONAL	energy confinement temperatures in ohmically- heated tokamaks ignition large tokamaks	attainable energy gain 15C. Laser-Plasma Interactions plasma production collisional absorption
11D 11E	cyclotron mode convective loss cone mode ballooning mode . 2X11B Experiment 281 . Tandem Mirrors 283 potential barriers	stability experiments 12E. Pitch-Reversed Helical	Bibliography 389	resonance absorption wave-coupling processe stimulated Brillouin scattering preheating self-focusing
	plug ions central cell confinement thermal barriers power gain ratio experiments MFTF-B	experiments 12F. Topolotron 345 topological stability experiment Bibliography 347		magnetic fields 15D. Compression rocket equation hydrodynamic efficienc ablation pressure shell stability

350	14A.	Stellarators and Torsatrons stellarator magnetic fields torsatron fields	393
		modular coils equilibrium and stability transport experiments reactors	/
	14B.	Internal Rings magnetic field configurations experiments	406
362	14C.	Electron and Ion Rings field reversal injection into toruses	411
	14D.	Elmo Bumpy Torus (EBT) introduction particle orbits equilibrium and stability	
372		ring stability heating transport ring power balance experiments reactors	
377	14E.	Electric Field Bumpy Torus	437 437
		nertial Confinement Fus ICF)	ion
382	15A.	Introduction ICF reactors compression problems	441
386	15B.	Energy Gain required energy gain	444
500	15C.	burnup fraction attainable energy gain Laser-Plasma Interactions - plasma production collisional absorption	450
389		resonance absorption wave-coupling processes stimulated Brillouin scattering preheating self-focusing magnetic fields	
	15D.	Compression rocket equation hydrodynamic efficiency ablation pressure shell stability	460