目 次

【第1部 基礎編】

第1	草	量子光字は重于刀字のノロントフンナー・	3
	·		松岡 正浩
1.		- 光学とは何か	
2.	原子	- 系のコヒーレント過渡状態―半古典論	4
3.	粒子	- 性と波動性,光の二重性	5
4.	重ね	1合わせ状態	
	4.1	重ね合わせ状態と波動関数の収縮	6
	4.2	粒子-波動の間の変化はいつ起こるのか	
5.	光子	- 数状態	
	5.1	光の量子化	
	5.2	光子数状態による展開	11
	5.3	コヒーレント状態は古典的状態であるが真空雑音を	
	5.4	スクイーズド状態は非古典的状態の代表	
6.	アン	· チバンチングにおける量子効果 ······	14
	6.1	二光子干渉とサブポアソン分布	
	6.2	アンチバンチングと量子干渉	
7.	8-	つれた状態	
	7.1	EPR パラドックス ·····	
	7.2	もつれた状態の発生	
8.	量于	子情報通信	
	8.1	もつれた状態による量子情報通信	
	8.2	量子暗号鍵配布	19
	8.3	コヒーレント状態によるシャノン限界を超えた量子	
9.	量于	子計算	20

10.	レ・	- ザー冷却	21
11.	量	子ドット,フォトニック結晶と共振器効果	21
12.		とめ	
第2	章	光と物質の相互作用:	
		ローレンツモデルと2順位原子 …	24
			江馬 一弘
1.	光の	伝搬方程式	24
	1.1	マクスウェル方程式	25
	1.2	マクスウェル方程式から伝搬方程式へ	26
	1.3	フーリエ成分の伝搬方程式	26
2.	古典	的ローレンツモデル	27
	2.1	ローレンツモデルによる分極の方程式	
	2.2	古典的光学感受率 ·····	29
	2.3	いくつかの振動子がある場合への拡張	30
3.	半古	.典的モデル	
	3.1	半古典的線形感受率	
4.	□ ~	レンツモデルによる光の伝搬	
	4.1	比誘電率 ·····	
	4.2	光学定数	
	4.3	ポラリトン	
5.	2準	位原子	
	5.1	古典的2準位原子	
	5.2	古典的ブロッホ方程式の解	
	5.3	量子論的2準位原子	
	5.4	古典論と半古典論の比較	
	5.5	伝搬方程式との連立	44
第3	章	光と相互作用した物質の状態:	
		密度行列とブロッホベクトル	
			岩本 敏
1.	はじ	めに	46

2.	密度	モ演算子	
	2.1	密度演算子とは	
	2.2	純粋状態の密度行列	
	2.3	混合状態の密度行列	
3.	密度	き行列の運動方程式と光学感受率	54
	3.1	密度行列の運動方程式と緩和現象	
	3.2	半古典論における感受率と飽和現象	
4.	ブロ	コッホベクトル	
	4.1	ブロッホベクトルとブロッホ方程式	
	4.2	回転波近似の意味と回転座標系	62
第4	章	物質中のコヒーレント過渡現象:	
		光章動とフォトンエコー	68
			南 不二雄
1.		じめに	
2.		章動	
3.		由誘導減衰	
4.		勺一な広がり	
5.	フォ	ォトンエコー	74
第5	章	光の粒子性を導く:電磁波の量子化	79
			松岡 正浩
1.		じめに	
2.		面電磁波	
3.		滋波の量子化	
4.		子数状態	
5.		ラとケット,状態ベクトルの記法	
6.		ネルギーの期待値	
7.		場の期待値と揺らぎ	
8.	ゼロ	口点エネルギー	93

第(章	一様でない空間における電磁場の量子	
		ビームスプリッターの量子論	
			松岡 正浩
1.		ibi:	
2.		からの入射―古典論	
3.	両側	からの入射―量子論	
	3.1	表面からの入射, 境界条件	
	3.2	裏面からの入射・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	3.3	直交性と完全性	
	3.4	両面からの入射,量子化	
	3.5	全反射領域の量子論	
4.	平行	fな2境界面(ファブリ・ペロー干渉計) ·····	
	4.1	表面からの入射	
	4.2	裏面からの入射	
	4.3	両面からの入射	
5.	多層	骨膜鏡の場合	
	5.1	境界条件	
	5.2	両面からの入射,量子化	
6.	おれ	っりに	108
弗	7章	量子論で干渉はどう説明されるか:	
		ヤングの干渉と強度干渉	
			松岡 正浩
1.		C. D. C.	
2.		-ムスプリッターで光子は分割されるか	
3.	ヤン	/ グの干渉	
	3.1	古典的な光	
	3.2	量子的な光	
	3.3	"光子は自分自身とのみ干渉する"	
	3.4	独立な光源からの光子	
	3.5	1次の相関関数	
4.	ハン	·ブリーブラウンとトゥイスの強度干渉 ·······	119

	4.1 古典的な光	21
	4.2 量子的な光	.22
第8	3章 コヒーレントな光の量子論:コヒーレント状態」	25
	松岡 正浩	
1.	はじめに	
2.	コヒーレント状態	
3.	コヒーレント状態の直交性と完全性	
4.	コヒーレント状態における電場の期待値と揺らぎ	
5.	直交位相演算子の不確定性関係	
6.	光子数と位相の不確定性関係	
7.	コヒーレンスと相関関数	
8.	相関関数の測定	136
第	9章 量子限界の克服:光のスクイーズド状態	139
	平野 琢也	
1.		
2.		
	2.1 直交位相振幅演算子とその不確定性関係	
	2.2 直交スクイーズド状態の数学的な取り扱い	
	2.3 直交スクイーズド状態における電場の期待値と揺らぎ	
	2.4 直交スクイーズド状態の光子数揺らぎ	
	2.5 直交スクイーズド状態の相関関数 まとめ	
3.	<i>\$ \&\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>	131
445	10章 真空雑音を制御する:	
ᄽ	直交スクイーズド光の発生と検出	152
	平野 琢也	132
1.		152
1. 2.	A A A A A A A A A A A A A A A A A A A	
۷.	2.1 非線形光学効果とパラメータ励振 ······	
	2.1 非線形分極と電場振幅の方程式	

3.	ホモダイン検出	157
	3.1 平衡型ホモダイン検出とは	157
	3.2 量子雑音の測定	
	実験の紹介	
5.	まとめ	165
第:	l1章 光子数揺らぎを制御する:	
	光子数スクイーズド状態	167
		神成 文彦
1.	はじめに	
2.	光子数スクイーズド状態の定義	
3.	サブポアソン光	
4.	光子数スクイーズド状態の発生	170
	4.1 電流制御半導体レーザー	170
	4.2 ファイバー Kerr 効果を用いた光子数スクイース	
5.	おわりに	178
第	2部 発展編】	
第:	1章 強度相関関数とアンチバンチング …	
		小芦 雅斗
1.	はじめに	
2.		
	2.1 光子検出器	
	2.2 検出過程の半古典論	
	2.3 強度相関関数	
	2.4 光子検出器の出力と入力光の強度相関	
	2.5 強度相関の測定	
3.	光子検出の量子論	
4.	パルス光の強度相関	191

4.1 定常パルス列の強度相関	191
4.2 アンチバンチングとサブポアソン光	192
5. アンチバンチングした光の発生	193
6. 展望	194
第2章 サブポアソン分布光源とその光子数分布測定	196
藤原 幹生	
1. はじめに	196
2. 光子統計の量子論的表現	197
2.1 コヒーレント光源	197
2.2 熱輻射光源	198
2.3 スクイーズド光源	199
2.3.1 直交位相スクイーズド状態	199
2.3.2 光子数-位相スクイージング	200
3. サブポアソン光の発生と検出	201
3.1 サブポアソン分布の発生方法	202
3.2 サブポアソン分布の発生と検出方法の例	203
3.2.1 非線形光学効果を用いた光波自己制御による発生方法 …:	203
3.2.2 パラメトリックダウンコンバージョンのアイドラー光を	
制御光として用いる発生方法	206
3.2.3 レーザの定電流駆動による揺らぎの制御による発生方法	209
4. 光子数分布取得技術 光子数識別器に向けて	211
第3章 単一光子の発生技術	218
臼杵 達哉	
1. はじめに	
2. 単一光子パルス	
3. 様々な単一光子源	
3.1 Heralded 型単一光子源 ······	
3.2 On-demand 型单一光子源 ······	
4. 量子ドット単一光子源	
4.1 半導体量子ドット	223

	4.2 単一量子ドット	
	4.3 単一光子生成	224
5.	単一光子源実用化への取り組み	226
	5.1 通信波長帯単一光子生成	226
	5.2 取り出し効率の向上	227
6.	まとめ	229
第4	l 章 EPR パラドックス ·······	232
	石坂	_
1.	はじめに	
2.	量子エンタングルメント	
3.	EPRパラドックス ·····	
4.	ベルの不等式	
5.	ベルの不等式の破れ	
6.	エンタングルメントの濃縮と希釈	
7.	おわりに	242
第 5	5章 量子もつれ光子の発生と検出	
	枝松 圭	
1.	はじめに	
2.	量子もつれ状態と密度行列	
3.	量子もつれ光子対の発生	
	3.1 原子からのカスケード放出	
	3.2 パラメトリック下方変換	
	3.3 光ファイバを用いた方法	
	3.4 半導体を用いた方法	
4.	量子もつれの観測	
5.	量子もつれの評価	
6.	おわりに	257

第6	6章 量子テレポーテーション	259
		青木 隆朗
1.	はじめに	
2.	2準位系での量子テレポーテーション	
	2.1 理論的提案	
	2.2 実験	
3.	連続量の系での量子テレポーテーション	267
	3.1 理論的提案	
	3.2 実験	
4.	おわりに	271
第	3部 応用編】	
第:	1章 量子情報処理と光子の利用	275
		井元 信之
1.	量子情報の定量化	
2.	量子ビット情報の環境雑音からの保護	
	2.1 量子エラー訂正	
	2.2 DFS 利用雑音回避	
3.	多体エンタングルメント	
	3.1 テレポーテーション型量子計算	281
	3.2 一方向量子演算	283
	3.3 多体エンタングルメント拡張ゲート	
4.	3.3 多体エンタングルメント拡張ゲート・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
		285
5.	量子暗号の安全性理論の進展 おわりに おわりに	
5.	量子暗号の安全性理論の進展	
5.	量子暗号の安全性理論の進展	·····································
5.	量子暗号の安全性理論の進展 おわりに おわりに	·····································
5. 第 :	量子暗号の安全性理論の進展	

4.	誤りなく情報を伝える:通信路符号化	294
	4.1 離散的情報源に関する通信路符号化	294
	4.2 連続的情報源に関する通信路符号化	299
	4.3 時間的に連続な情報源に関する通信路符号化	301
5.	量子情報通信の萌芽	302
第3	3章 量子情報通信とその展望	305
	佑	三々木 雅英
1.	量子情報通信の歴史をたどって	305
2.	量子情報通信の基本骨格	309
3.	光の波動性を制御したコヒーレント光通信	310
4.	光の粒子性を制御した通信と非線形ゲート	312
5.	究極の通信に向かって-量子一括復号	313
	5.1 量子一括復号	315
	5.2 狭帯域通信路	316
	5.3 広帯域通信路	317
	5.4 量子利得と実効的伝送速度	
6.	終わりに一展望	319
第4	4章 量子暗号鍵配布の安全性理論	323
		富田 章久
1.	はじめに	
2.	量子暗号鍵配布のしくみ	
	2.1 量子通信	
	2.2 安全な鍵を作るには	
	2.3 鍵蒸留プロトコル	329
	2.3.1 誤り訂正	
	2.3.2 秘匿性增強	
	2.4 レーザ光源を用いた場合の漏洩情報量推定	
3.	おわりに	337

第5	;章 量子暗号鍵配布の実験	339
		長谷川 俊夫
1.	はじめに	
2.	基本概念と鍵共有プロトコル	
3.	データ処理(誤り訂正, 秘匿性増強)	
4.	実験系構築の基本	
5.	量子暗号の代表的な光学スキーム	
6.	量子暗号の構成要素技術と性能	
7.	最近の実験動向と新方式	
8.	自由空間伝送による実現	
9.	まとめと今後の展開	352
第6		
	──その実装例── ·····	
		武岡 正裕
1.	はじめに	
2.	量子信号の非直交性	
3.	量子情報源符号化	
	3.1 量子データの圧縮限界	
	3.2 圧縮の具体例と原理実証	
4.	量子通信路符号化	
5.	まとめ:実用的な量子符号化の実現に向けて	
第7		
	デコヒーレンス―	
		伊藤 公平
1.	はじめに	
2.	量子計算の原理と性能指標	
3.	量子計算における量子ゲート	
4.	量子ビットのデコヒーレンス	
5.	誤り訂正符号	
6.	まとめにかえて	384

第8		
	──そのしくみと最新状況── ······	386
		内 繁樹
1.	はじめに	
2.	量子計算の基礎知識	
3.	光子を用いた量子計算	
4.	KLM の提案	389
5.	シンプルな量子位相ゲート	
6.	2 光子間量子ゲートの実現	
7.	量子メトロロジーへの応用	
8.	まとめ	395
第9	章 レーザー冷却とボース・アインシュタイン凝	樎 398
		井 寿夫
1.	はじめに	
2.	光が原子に及ぼす力(輻射圧と双極子力)	
	2.1 ローレンツモデルによる輻射圧および双極子力の説明	
	2.2 量子論的2準位原子に働く力	
3.	レーザーによる原子の冷却および捕捉	
	3.1 原子線の減速	
	3.2 ドップラー冷却	
	3.3 ドップラー冷却限界	
	3.4 磁気光学トラップ	
4.	ボース・アインシュタイン凝縮 (BEC)	
	4.1 背景	
	4.2 気体原子BECの実現 ·······	
	4.3 BECのコヒーレンス	
5.	まとめ	418
mr -	* * * * * * * * * * * * * * * * * * *	
弗 1	0章 冷却原子を用いた量子シミュレーション …	
		橋 義朗
1	はじめに	421

2.	光トラップと光格子	422
3.	超流動・モット絶縁体量子相転移の観測	425
4.	量子シミュレーションの可能性	427
5.	量子シミュレーションの実現性	
6.	まとめ	430
第1	1章 18桁の精度を目指す次世代時間周波数計	
	──光格子時計・光周波数コム・光リンク-	
		香取 秀俊
	光の時代の周波数計測	
2.	光周波数計測,伝送のツール	
:	2.1 光周波数コム	
	2.2 光ファイバーリンク	
3.	光格子時計	
	3.1 原子時計研究の展開:セシウム原子時計から単一イン	
	3.2 光格子時計の発明	
	3.3 「魔法波長」光格子	
;	3.4 光格子時計の実現から「秒の2次表現」の採択へ …	
	3.5 究極の光格子時計をデザインする―量子統計性と光格	
4.	究極の光周波数計測を目指して	448
995 a 4	o 辛、火の但をしませ	
弗 17	2 章 光の保存と再生	
	はじめに	上妻 幹旺
	ほしめに	
	2.3 いかにして光の量子状態をスピン系に転写するか?量子メモリの厳密な理解にむけて	
	重于メモリの敵省な理解にむり (直空スクイーズド状能を用いた量子メモリ宝験	
4	- ラーハノ 1 三 ハ F 4N 85 7 用 V 1 / 単	4h

5.	展望	•••••	···· 467
第 1	13 章 共振器量子電気力学入門		469
		岩本	敏
1.	はじめに		469
2.	量子化された電磁場と物質の相互作用と Jaynes-Cummings	モデル	471
3.	強結合領域における共振器量子電気力学~真空ラビ振動~		473
	3.1 ドレスト状態と真空ラビ分裂		473
	3.2 環境との相互作用の影響 ~ラビ振動の減衰~		477
4.	弱結合領域における共振器量子電気力学~自然放出レート	の増殖	歯~
			478
5.	共振器量子電気力学の応用		481
6.	まとめ		483
第1	14章 量子ドットの基礎と量子情報分野への応用]	486
			閏子
1.	はじめに		
2.			
3.	量子ドットの電子状態		
	3.1 量子閉じ込め効果 (量子サイズ効果)		
	3.2 励起子		
	3.3 励起子微細構造		
	3.4 励起子分子,荷電励起子		
4.	単一量子ドットの発光分光		
5.	— • · · · · · · · · · · · · · · · · · ·		
	5.1 回転ゲート (ラビ振動)		
	5.2 制御ノットゲート		
6.	量子ドット励起子における位相緩和		
7.	おわりに		501

第 1	5章	フ	ォトニ	ニック	結晶を	用い	たキャ	ァビテ	ィ QE	D	•••••	503
										納富	雅也	
1.	はじ	めに	•••••	•••••				•••••	•••••	•••••	•••••	503
2.	光を	閉じえ	らめる	ことが	なぜ難し	しいか?	•••••	•••••	•••••		•••••	504
3.	フォ	トニッ	ク結	晶によ	る小型語	岛 Q 共扬	器設計	十の実例	j	•••••	•••••	507
4.	フォ	トニッ	ク結	晶共振	器のキュ	ャビティ	QED	への応見	月		•••••	513
	4.1	半導体	本量子	ドット	十フォ	トニック	お品具	共振器	•••••	•••••	•••••	513
	4.2	冷却原	京子+	フォト	ニック約	吉晶共振	· 器		• • • • • • • • • • • • • • • • • • • •	•••••	•••••	514
					•••••							
6.	展望	•••••				•••••	•••••		• • • • • • • •	• • • • • •	•••••	517