	CONTENTS	
CIT I DODD		
L INCT	ADJICTION TO DESEADOU IN DUME MORE	PAGE
I. IN IR	ODUCTION TO RESEARCH IN FLUID MOTION	
A. M	ATHEMATICAL ANALYSIS VERSUS EXPERIMENTAL MEASUR	EMENT
	1. Present Status of the Science	1
	2. Limitations of Mathematical Analysis	2
	3. Limitations of Unguided Experiment	3
	A. Method of Presentation	4
B. Di	MENSIONAL CONSIDERATIONS	
	5. Dimensional Homogeneity	5
	5. The II-Theorem	7
	7. Non-Dimensional Relationships and Their Significance	11
C. IN	VESTIGATIONAL PROCEDURE	
	3. Selection of Primary Variables	15
	9. Organization of Parameters	16
1). Conduct of Investigation	10
1	I. Analysis of Results	19
D. D.	SCUSSION OF TYPICAL INVESTIGATIONS	
1	Crossitational Discourses	21
1	Elementith Viscout Desistance	23
1	Transportation of Discusta Matter	25
1	. Transportation of Discrete Matter	20
II. FUNI	DAMENTAL CONCEPTS AND EQUATIONS	
A. FI	OW OF A CONTINUOUS MEDIUM	
	5. The Continuum	20
1	7. Velocity as a Function of Time and Space Coordinates	30
1	3. Equations of Continuity	32
- 		
B. CI	ARACTERISTICS OF THE FLOW PATTERN	
1	J. Stream Lines	37
2	J. Stream Functions of Lagrange and Stokes	39
2	. Stream Surfaces in Three-Dimensional Flow	42
C. Ki	NEMATICS OF FLOW	
2	2. Translation, Deformation, Rotation	46
2	3. Vorticity and Circulation	49
2	4. Components of Acceleration	53
D. D	NAMICS OF FLOW	
2	5. Forces on a Fluid Element	56
2	5. Equations of Motion	59
2	7. Equations of Momentum and Energy	63
	xi	
		1

CHAPTER	PAGE
III. PRINCIPLES OF IRROTATIONAL	FLOW
A. FUNDAMENTAL POTENTIAL THEORY	
28. Characteristics of Potential Fie	lds 68
29. Important Theorems and Equa	tions 75
D. D. D. D. Classification of infotational-Fi	ow Froblems 79
B. IYPICAL FLOW SYSTEMS	
31. Basic Potentials and Stream Fi	unctions 82
33 Dynamic Relationships	92
C MATHEMATICAL TECHNIQUES BOD S	or which Bronz Pres
34 Separation of Variables	OLVING I ROBLEMS
35. Method of Images	101
36. Method of Integral Equations	121
D. Approximation Techniques	
37. Graphical Methods	130
38. Continuous-Conductor Analog	3 133
39. Finite-Difference Principles	136
IV. CONFORMAL REPRESENTATION	OF TWO-DIMENSIONAL FLOW
A. INTRODUCTION TO FUNCTIONS OF A	COMPLEX VARIABLE
40. Functions of a Complex Variat	le 143
41. The Cauchy Integral Theorem	149
42. Application to Potential Flow	152
B. Principles of Conformal Mappin	IG
43. Geometric Properties of Analyt	ic Functions 158
44. Elementary Transformations	163
C. Flows with Given Boundaries	
45. Flows about Single Obstacles	177
46. A Neumann Problem; Lineariz	ed Foil Theory 184
47. Flows about Two or More Obs	tacles 187
48. Polygonal Boundaries; Schwarz	z-Christoffel Mapping 189
D. FREE-STREAM-LINE FLOWS; THE H	odograph Method
49. Free-Stream-Line Theory	192
50. Applications to Efflux and Jet	Deflection 195
V. LAMINAR MOTION	
A. FUNDAMENTALS	
51. Relationship between Stress an	d Rate of Deformation 200
52. Physical Interpretations of Vis	cosity 204
53. Kate of Energy Dissipation	205
B. THE NAVIER-STOKES EQUATIONS	
54. Formulation of the Equations	207
S. Equations Governing the Diffu	sion of vorticity 210
C. EXACT SOLUTIONS OF THE NAVIER-	STOKES EQUATIONS
57 Unsteady Linear Cases	215
58. Non-Linear Cases	221
	221

xii

CHAPTER	PAGE
 D. APPROXIMATE SOLUTIONS OF THE NAVIER-STOKES EQUATIONS 59. Very Slow Motion—Stokes' Solution for the Falling Sphere 60. Laminar Wakes 61. Non-Linear Cases: Jets 	236 240 242
 E. STABILITY OF LAMINAR FLOW 62. General Remarks 63. The Method of the Exponential Time Factor 64. Sufficient Conditions for Stability 65. The Method of Energy and the Method of Vorticity 66. Effect of Nature of Disturbance on Stability 	248 250 254 256 258
VI. TURBULENCE	
 A. GENERAL CONSIDERATIONS 67. Introductory Remarks 68. Mean Values 69. Probability-Density Functions B. FUNDAMENTAL FOULTIONS FOR TURBULENT FLOWS 	261 261 264
 70. Reynolds Equations 71. Equation of Linear Momentum 72. Equation of Energy 	267 271 272
 C. ISOTROPIC TURBULENCE 73. Definitions and Descriptive Relationships 74. Dynamics of Isotropic Turbulence 75. Frequency Distribution of the Kinetic Energy 	276 283 286
 D. TURBULENT DIFFUSION 76. Descriptive Relationships 77. The Diffusion Equation 	291 293
E. TURBULENT SHEAR FLOW78. Phenomenological Theories79. Typical Measurements in Shear Flows	297 300
VII. BOUNDARY LAYERS	
 A. BASIC CONCEPTS 80. Nature of Flow along a Solid Boundary 81. Assumptions of Boundary-Layer Theory 82. Definitions of Boundary-Layer Thicknesses 	306 309 309
 B. BOUNDARY-LAYER EQUATIONS AND THEIR INTEGRALS 83. Two-Dimensional Flow along a Curved Wall 84. Axisymmetric Flow about a Surface of Revolution 85. Three-Dimensional Flow along an Arbitrary Surface 	312 319 322
 C. LAMINAR BOUNDARY LAYERS 86. Solutions for Steady Two-Dimensional Flows 87. Solutions for Steady Axisymmetric Flow 88. Approximate Methods of Solution for Steady Flows 89. Unsteady Boundary Layers 	325 333 336 339
D. TURBULENT BOUNDARY LAYERS 90. Mean Velocity Distribution Near the Wall	343

xiii

CHAPTER	PAGE		
91. Mean Velocity Distribution at a Distance from the Wall	346		
92. Overlapping of Inner and Outer Laws	348		
93. Boundary Layer on a Flat Plate	352		
94. Approximate Calculation of Turbulent Boundary Layers	356		
VIII. FREE-TURBULENCE SHEAR FLOW			
A. INTRODUCTORY REMARKS			
95. Flow Induced by a Velocity Discontinuity	359		
96. Methods of Analysis	362		
B. THE MIXING OF PARALLEL STREAMS			
97. General Relationships for Mixing Streams	364		
98. The Velocity Distribution of Mixing Streams	368		
C. THE SPREADING OF WAKES			
99. Integral Relationships for Wakes	371		
100. General Characteristics of Wakes	375		
101. Velocity Distribution in Wakes	378		
D. DIFFUSION OF JETS			
102. Integral Relationships for Jets	382		
103. Velocity Distribution in the Jet	385		
E. Comparison between Theory and Observation			
104. Completeness of Analyses	389		
105. Mean-Flow Characteristics of Jets and Wakes	390		
106. Turbulence Characteristics of Jets	394		
F. EXTENSION OF ANALYSES TO FINITE FIELDS OF FLOW			
107. Fundamental Difference between Finite and Infinite Fields	400		
108. Examples of Analyses for Finite Fields of Flow	402		
APPENDIX			
A. EQUATIONS IN CURVILINEAR ORTHOGONAL COORDINATES	407		
B. LIST OF SYMBOLS	420		
ANSWERS TO PROBLEMS	424		
AUTHOR INDEX			
SUBJECT INDEX			

 $\mathbf{x}\mathbf{i}\mathbf{v}$