Contents

Preface 5

Part I

Introduction 11

I T_{i}	he error of a numerical solution 19
1.1	Sources and classification of errors 19
i.2	Number representation in computers 22
1.3	Absolute and relative errors. Notation 23
1.4	Computational error 25
1.5	The error of a function 26
2 <i>In</i>	terpolation and allied problems 33
2.1	Approximation of functions. Statement of the problem 34
2.2	Lagrange's interpolation polynomial 38
2.3	Estimate of the remainder of Lagrange's interpolation polynomial 40
2.4	Divided differences and their properties 41
2.5	Newton's interpolation formula with divided differences 42
2.6	Divided differences and interpolation with multiple points 46
2.7	Difference equations 50
2.8	Chebyshev polynomials 60
2.9	Minimizing the remainder estimate of an interpolation formula 63
	Finite differences 66
2.11	Newton's interpolation formulas for equal intervals 69
2.12	Interpolation formulas of Bessel and Everett. Compiling tables 71
2.13	Rounding errors in interpolation 80
2.14	Applying the apparatus of interpolation. Inverse interpolation 82
2.15	Orthogonal systems and their properties 83
2.16	Orthogonal polynomials 89
2.17	Numerical differentiation 93
2.18	On the computational error of formulas of numerical differentiation 9
	7

NUMERICAL METHODS OF MATHEMATICAL ANALYSIS 17

8 Contents

3	Numerical	integration	100
J	numencui	megranon	100

- 3.1 Newton-Cotes quadrature formulas 100
- 3.2 Error estimate of a quadrature formula on a class of functions 109
- 3.3 Gaussian quadrature formulas 113
- 3.4 Practical error estimates of elementary quadrature formulas 125
- 3.5 Integration of strongly oscillating functions 130
- 3.6 Increasing the accuracy of integration by equal partition of the interval 134
- 3.7 On statements of optimization problems 139
- 3.8 Optimal quadratures on classes of functions with one derivative 144
- 3.9 Optimization of spacing in a quadrature formula 151
- 3.10 Examples of optimization of spacing 157
- 3.11 Principal error term 163
- 3.12 Euler and Gregory formulas 168
- 3.13 Runge's rule for a practical error estimate 171
- 3.14 Romberg's formulas 178
- 3.15 Experiments and their discussion 182
- 3.16 Evaluating integrals in the irregular case 189
- 3.17 Principles of constructing standard programs with automatic choice of step 197
- 3.18 Standard programs of numerical integration 205

4 Aproximation of functions and allied problems 214

- 4.1 Best approximations in a normed linear space 214
- 4.2 Best approximation in Hilbert space and problems involved in its practical construction 216
- 4.3 Discrete Fourier transform 222
- 4.4 Fast Fourier transform 227
- 4.5 Best uniform approximation 230
- 4.6 Examples of best uniform approximation 233
- 4.7 An iteration method for constructing a polynomial of best uniform approximation 240
- 4.8 On polynomial notation 248
- 4.9 On ways of computing elementary functions 255
- 4.10 On the rate of approximating functions of different classes 260
- 4.11 Interpolation and spline approximation 264
- 4.12 Entropy and ε-entropy 270

5 Multidimensional problems 278

- 5.1 The method of undetermined coefficients 279
- 5.2 The method of least squares 280
- 5.3 The method of regularization 282
- 5.4 An example of regularization 283
- 5.5 Reducing multidimensional problems to one-dimensional ones 290
- 5.6 Error estimation of numerical integration on a uniform grid 298
- 5.7 Lower error estimate in numerical integration 301
- 5.8 On optimizing the error estimate on broader classes of integration methods 304
- 5.9 The Monte Carlo method 309

- 5.10 Justification for using nondeterministic methods in problem solving (a discussion) 314
- 5.11 Accelerating convergence of the Monte Carlo method 316
- 5.12 High-precision quadrature formulas with random points 320
- 5.13 On choosing a method of solving a problem 326

Part II

PROBLEMS OF ALGEBRA AND OPTIMIZATION 333

- 6 Numerical methods of algebra 335
- 6.1 Methods of elimination 336
- 6.2 The Method of orthogonalization 344
- 6.3 The method of simple iteration 347
- 6.4 Investigation of an actual iteration process 352
- 6.5 The spectrum of a family of matrices 356
- 6.6 The δ²-process for a practical estimate of error and acceleration of convergence 361
- 6.7 Optimizing the rate of convergence of iteration processes 365
- 6.8 Seidel's method 375
- 6.9 The method of steepest descent 382
- 6.10 The method of conjugate gradients 386
- 6.11 The Monte Carlo method for solving systems of linear equations 392
- 6.12 Iteration methods involving the use of spectrally equivalent operators 400
- 6.13 The error of an approximate solution of a system of equations and the condition of the matrix. Regularization 403
- 6.14 The eigenvalue problem 409
- 6.15 Solving the complete eigenvalue problem for a symmetric matrix by the rotation method 415
- 7 Solving systems of nonlinear equations and optimization problems 420
- 7.1 The method of simple iteration and allied questions 421
- 7.2 Newton's method of solving nonlinear equations 426
- 7.3 Other methods of solving a single equation 431
- 7.4 Descent methods 436
- 7.5 Other methods of reducing multidimensional problems to lower-dimensional problems 442
- 7.6 Solving stationary problems by stabilization 446
- 7.7 What needs to be optimized? 453
- 7.8 How do we optimize it? 458

Part III

NUMERICAL METHODS OF SOLVING ORDINARY DIFFERENTIAL EQUATIONS 465

8 Numerical methods of solving the initial-value problems 467

- 10
- 8.1 Expanding a solution in a Taylor series 468
- 8.2 The Runge-Kutta methods 470
- 8.3 Methods involving error checks at every step 479
- 8.4 Error estimates in one-step methods 481
- 8.5 Finite-difference methods 486
- 8.6 The method of undetermined coefficients 491
- 8.7 Studying the properties of difference methods on model problems 496
- 8.8 Error estimates in difference methods 504
- 8.9 The principal error term 509
- 8.10 Studying the properties of finite-difference methods on more exact models 514
- 8.11 Integrating systems of equations 524
- 8.12 Some general questions 533
- 8.13 Formulas for numerical integration of second-order equations 542
- 8.14 The error estimate of a numerical solution of the initial-value problem for a second-order equation 545
- 8.15 Two-sided methods 551
- 9 Numerical methods of solving boundary-value problems for ordinary differential equations 559
- 9.1 Elementary methods of solving a boundary-value problem for a second-order equation 559
- 9.2 Green's function of a grid boundary-value problem 566
- 9.3 Solving an elementary boundary-value grid problem 571
- 9.4 Closures of computational algorithms 581
- 9.5 Statements of boundary-value problems for linear systems of the first order (a discussion) 589
- 9.6 Solution algorithms of boundary-value problems for systems of first-order equations 595
- 9.7 Methods of differential orthogonal sweeping 601
- 9.8 Nonlinear boundary-value problems 608
- 9.9 Special-type approximations 619
- 9.10 Difference methods for finding eigenvalues 627
- 9.11 Optimization in spacing integration points 631
- 9.12 The effect of a computational error as dependent on the mode of representing the difference equation 638
- 9.13 Estimating the computational error when solving boundary-value problems by the sweep method 643

References 648

Index 655