CONTENTS

Foreword	ix
PREFACE TO THE SECOND EDITION	xi
TRANSLATION EDITOR'S NOTE	xii
I. PROPERTIES OF MANY-PARTICLE SYSTEMS AT LOW TEMPERATURES	
 § 1. Elementary excitations. Energy spectrum and properties of liquid He⁴ at low temperatures 1. Introduction. Quasi-particles 2. Spectrum of a Bose liquid 3. Superfluidity 	1 1 5 10
 § 2. Fermi liquids 1. Excitations in Fermi liquids 2. Quasi-particle energy 3. Sound 	15 15 18 22
§ 3. Second quantisation	27
§ 4. Dilute Bose gas	30
§ 5. Dilute Fermi gas	35
II. QUANTUM FIELD THEORETICAL METHODS AT $T=0$	
§ 6. The interaction representation	42
 § 7. The Green function 1. Definition. Free particle Green functions 2. Analytic properties 3. Physical meaning of the poles 4. Green function of a system in an external field 	49 49 53 57 61
§ 8. Basic principles of diagram techniques 1. Transformation from N to μ as independent variable 2. Wick's theorem 3. Feynman diagrams	63 63 64 66
 § 9. Rules for drawing diagrams for different types of interaction 1. The diagram technique in coordinate space. Examples 2. The diagram technique in momentum space. Examples 	70 70 78
§ 10. Dyson equation. The vertex part. Many-particle Green func- tions	83

V

CONTENTS

Ac. 6 1.5.1

	1. Diagram summation. Dyson equation	83
	2. Vertex parts. Many-particle Green functions	87
	3. Ground state energy	93
III. 'I	THE DIAGRAM TECHNIQUE AT FINITE TEMPERATURES	
§ 11.	Temperature-dependent Green functions	95
U	1. General properties	95
	2. Temperature-dependent free particle Green functions	99
§ 12.	Perturbation theory	101
v	1. The interaction representation	101
	2. Wick's theorem	104
§ 13.	The diagram technique in coordinate space. Examples	109
	The diagram technique in momentum space	118
C C	1. Transformation to the momentum representation	118
	2. Examples	121
§ 15.	The perturbation theory series for the thermodynamic poten-	
•	tial	128
§ 16.	Dyson equation. Many-particle Green functions	132
v	1. Dyson equation	132
	2. Connection between the Green functions and the thermo-	
	dynamic potential $arOmega$	137
§ 17.	Time-dependent Green functions G at finite temperatures.	
	Analytic properties of the Green functions	141
IV. I	Fermi Liquid Theory	
	Properties of the vertex part for small momentum transfer.	
ş 10.	Zero sound	152
610	Effective mass. Connection between Fermi momentum and	100
g 15.	number of particles. Bose branches of the spectrum. Specific	
	heat	158
	1. Auxiliary relations	158
	2. Proof of the fundamental relations of the Fermi liquid theory	160
	3. Bose branches of spectrum	162
	4. Another derivation of the connection between the Fermi	
	momentum p_0 and the number of particles	164
	5. Specific heat	166
	6. Damping of quasi-particles in a Fermi liquid	170
§ 20.	Special properties of the vertex part in the case where the	
	total momentum of the colliding particles is small	173
§ 21.	Electron-phonon interactions	177
	1. The vertex part	177
	2. The phonon Green function	179

CO	N	т	Е	N	т	s
----	---	---	---	---	---	---

	3. The electron Green function	182
	4. A correction to the linear term in the electronic specific heat	188
§ 22.	Some properties of a degenerate plasma	189
	1. Statement of the problem	189
	2. Vertex part for small momentum transfer	191
	3. The electron spectrum	195
	4. Thermodynamic functions	200
V. Sı	INTERACTING BOSONS	
§ 23.	Application of field theory methods to a system of bosons at	
	absolute zero	203
§ 24.	Green functions	212
·	1. Structure of the equations	212
	2. Analytic properties of the Green functions	216
	3. Behaviour of the Green functions for small momenta	219
§ 25.	Dilute non-ideal Bose gas	220
	1. Diagram technique	220
	2. Connection between the chemical potential and the self-	
	energy parts of the single-particle Green functions	223
	3. Low density approximation	226
	4. Effective interaction potential	229
	5. Green functions of a Bose gas in the low density approxi-	000
	mation. Spectrum	232
§ 26.	Properties of the single-particle excitation spectrum close	000
	to its end-point	233
	1. Statement of the problem	233
	2. System of equations	235
	3. Properties of the spectrum close to the phonon creation	237
	threshold	237
	4. Properties of the spectrum close to the threshold of	
	break-up into two excitations with parallel non-vanishing	241
	momenta 5. Break-up into two excitations at an angle to each other	241 242
\$ 97	Application of field theory methods to a system of inter-	
8 21.	acting bosons at finite temperatures	245
	acting posons at mine temperatures	- 10
VI. I	Electromagnetic Radiation in an Absorbing Medium	
§ 28.	Radiation Green functions in an absorbing medium	250
§ 29.	Calculation of the dielectric constant	257
§ 30.	Van der Waals forces in a non-uniform dielectric	261
§ 31.	Molecular interaction forces between solids	266
	1. Interaction forces between solids	266

CONTENTS	

	2. Interaction forces between atoms in solutions 3. Thin films on a solid surface	272 275
VII. '	THEORY OF SUPERCONDUCTIVITY	
§ 32.	General introduction. Choice of model 1. Superconductivity 2. Model. Interaction Hamiltonian	277 277 279
	Cooper phenomenon. Instability of the ground state of a system of non-interacting fermions with respect to arbitrarily	
	weak attractions between the particles	281
	1. Equation for the vertex part	281
	2. Properties of the vertex part	284
	3. Determination of the transition temperature	286
§ 34.	System of fundamental equations for a superconductor	288
	1. Superconductor at absolute zero	288
	2. The equations in the presence of an external electromag-	293
	netic field. Gauge invariance 3. Superconductor at finite temperatures	295 294
0.95		201
g 30.	Deduction of the superconductivity equations in the phonon model	296
§ 36.	Thermodynamics of superconductors	300
	1. Temperature-dependence of the gap	300
	2. Specific heat	302
	3. Critical field	304
§ 37.	Superconductors in a weak electromagnetic field	305
	1. Constant weak magnetic field	305
	2. Superconductor in variable fields	312
§ 38.	Properties of superconductors close to the transition tempera- ture in an arbitrary magnetic field	317
8 39	Theory of superconducting alloys	322
y 00.	1. Statement of the problem	322
	2. Residual resistance of normal metals	323
	3. Electromagnetic properties of superconducting alloys	330
VIII.	TRANSPORT EQUATION FOR EXCITATIONS IN A FERMI LIQUID	
§ 40.	Non-equilibrium properties of a Fermi liquid	339
-	1. Introduction	339
	2. Statement of the problem	341
§ 41.	The analytical properties of the vertex part	342
§ 42.	Equation for the vertex part; transport equation	348
Refe	BENCES	359
Index		363

viii