CONTENTS

ı.	FUNDAMENTAL VARIATIONAL PRINCIPLE IN THERMAL CONDUCTION	
	1. Introduction	1
	2. Variational principle for isotropic thermal conductivity	3
	3. Generalized coordinates	6
	4. Lagrangian equations and minimum dissipation	8
	5. Anisotropic thermal conductivity	11
	6. Heat sources	14
	7. Numerical example	16
	7. Numerical example	
2.	GENERAL THEORY OF LINEAR SYSTEMS	704065
	1. Introduction	21
	2. Boundary dissipation function	22
	3. Linear Lagrangian equations	24
	4. Thermal relaxation modes	27
	5. Orthogonality and normal coordinates	30
	6. Quasi-steady flow	36
	7. Illustrative example—weak solutions	38
3.	OPERATIONAL FORMULATION	4.0
	1. Introduction	42
	2. Thermal admittance	43
	3. Thermal impedance	46
	4. Fourier and Laplace transforms	49
	5. Operational rules	51
	6. Operator-variational principle	54
	7. Interconnection principle	56
	8. Continuous spectrum	59
4.	ASSOCIATED FIELDS	
	1. Introduction	63
	2. Ignorable coordinates and associated fields	64
	3. Minimum dissipation principle for associated fields	68
	4. Alternative formulation for associated fields	70
	5. Relation to Green's function	74
	6. Associated fields and normal coordinates	77
	7 Frample of associated fields	81

x CONTENTS

5.	NON-LINEAR SYSTEMS	
	1. Introduction	85
	2. Thermal potential of non-linear systems	86
	3. Variational principle	86
	4. Associated fields for non-linear systems	89
	5. Melting boundaries and radiation	92
	6. Heating and cooling of a wall with non-linear properties	96
6.	CONVECTIVE HEAT TRANSFER	
	1. Introduction	99
	2. Trailing function	100
	3. Lagrangian equations for conduction with boundary convection	104 -
	4. Associated fields for convective heat transfer	106
	5. Unified equations for fluid-solid systems with convection	111
7.	BOUNDARY-LAYER HEAT TRANSFER	
	1. Introduction	117
	2. Conduction analogy	118
	3. Variational evaluation of the trailing function	120
	4. General variational procedures	124
	5. Laminar boundary layer	130
	6. Turbulent boundary layer	134
	7. Applications	139
8.	COMPLEMENTARY PRINCIPLES	
	1. Introduction	143
	2. Conduction in linear systems	144
	3. Operational principles	151
	4. Conduction in non-linear systems	154
	5. Convective systems	156
\mathbf{A}	PPENDIX. RELATED SUBJECTS	
	1. Introduction	161
	2. Mass transport	162
	3. Irreversible thermodynamics	165
	4. Generalized coordinates and functional analysis	173
A٦	UTHOR INDEX	181
sτ	BJECT INDEX	182